• Title/Summary/Keyword: Unknown key-share attack

Search Result 5, Processing Time 0.024 seconds

ID-based Tripartite Multiple Key Agreement Protocol Combined with Key Derivation Function (키 유도함수를 결합한 ID 기반 3자 복수키 동의 프로토콜)

  • Lee Sang-Gon;Lee Hoon-Jae
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.133-142
    • /
    • 2006
  • The purpose of the multiple key agreement protocol is to get efficiency in computational and communicational aspects compared to multiple executions of single key agreement protocol. However ID based tripartite multiple key agreement protocols have been proposed, it is reported that they can not resist unknown key-share attack or impersonation attack. How to design a secure and efficient ID-based authenticated tripartite multiple key agreement scheme to prevent all kinds of attacks remains an open problem. This paper proposes a multiple key agreement scheme combing the existing single key agreement protocol with a key derivation function. The proposed scheme can not only increase computational efficiency compared to the existing multiple key agreement protocol, but can ensure security of the proposed schemes by using a security proofed single key agreement protocol and key derivation function.

  • PDF

Security Weaknesses in Harn-Lin and Dutta-Barua Protocols for Group Key Establishment

  • Nam, Jung-Hyun;Kim, Moon-Seong;Paik, Ju-Ryon;Won, Dong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.751-765
    • /
    • 2012
  • Key establishment protocols are fundamental for establishing secure communication channels over public insecure networks. Security must be given the topmost priority in the design of a key establishment protocol. In this work, we provide a security analysis on two recent key establishment protocols: Harn and Lin's group key transfer protocol and Dutta and Barua's group key agreement protocol. Our analysis shows that both the Harn-Lin protocol and the Dutta-Barua protocol have a flaw in their design and can be easily attacked. The attack we mount on the Harn-Lin protocol is a replay attack whereby a malicious user can obtain the long-term secrets of any other users. The Dutta-Barua protocol is vulnerable to an unknown key-share attack. For each of the two protocols, we present how to eliminate their security vulnerabilities. We also improve Dutta and Barua's proof of security to make it valid against unknown key share attacks.

An ID-based entity-authentication and authenicated key exchange protocol with ECDSA (ECDSA를 적용한 ID 기반의 사용자 인증 및 키 교환 프로토콜)

  • 박영호;박호상;정수환
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.1
    • /
    • pp.3-10
    • /
    • 2002
  • This paper proposes an ID-based entity-aunthentication and authenticated key exchange protocol with ECC via two-pass communications between two parties who airs registered to the trusted third-party KC in advance. The proposed protocol developed by applying ECDSA and Diffie-Hellman key exchange scheme to the ID-based key distribution scheme over ECC proposed by H. Sakazaki, E. Okamoto and M. Mambo(SOM scheme). The security of this protocol is based on the Elliptic Curve Discrete Logarithm Problem(ECDLP) and the Elliptic Curve Diffie-Hellman Problem(ECDHP). It is strong against unknown key share attack and it provides the perfect forward secrecy, which makes up for the weakness in SOM scheme,

Advanced Key Agreement Protocol for Wireless Communication (무선 통신을 위한 진보된 키 합의 프로토콜)

  • Yu Jae-Gil;Yoon Eun-Jun;Yoo Kee-Young
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.171-175
    • /
    • 2006
  • Diffie-Hellman기반 키 합의 프로토콜들은 비교적 고비용의 연산인 지수연산으로 인해, 유선 네트워크 환경에 비해 저전력이고 컴퓨팅 자원이 제한되어 있는 무선 네트워크 환경에서는 비효율적이고 구현하기 어려운 문제가 있다. 이에 Yang등은 대리서버(Proxy Server)를 이용하여 Diffie-Hellman방식을 적용하면서도 단말 무선 네트워크 사용자의 지수연산부담을 감소시키는 효율적인 키 합의 프로토콜(이하 SEKAP)을 제안하였다. 그러나 SEKAP는 재전송공격(Replay Attack), 알려지지 않은 키 공유 공격(Unknown Key Share Attack), 그리고 키 노출로 인한 위장공격(Key Compromised Impersonation Attack) 등에 취약하며 전방향 안전성(Forward Secrecy)을 제공하지 못한다. 본 논문에서는 SEKAP가 위 공격들에 대해 취약함을 보이고, 세션키의 상호인증을 추가한 개선된 프로토콜을 제안한다.

  • PDF

An Escrow-Free Two-party Identity-based Key Agreement Protocol without Using Pairings for Distinct PKGs

  • Vallent, Thokozani Felix;Yoon, Eun-Jun;Kim, Hyunsung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.3
    • /
    • pp.168-175
    • /
    • 2013
  • Key escrow is a default property that is inherent in identity-based cryptography, where a curious private key generator (PKG) can derive a secret value shared by communicating entities in its domain. Therefore, a dishonest PKG can encrypt and decrypt ciphers or can carry out any attack on the communicating parties. Of course, the escrow property is not completely unwanted but is acceptable in other particular applications. On the other hand, in more civil applications, this key escrow property is undesirable and needs to be removed to provide maximum communication privacy. Therefore, this paper presents an escrow-free identity-based key agreement protocol that is also applicable even in a distinct PKG condition that does not use pairings. The proposed protocol has comparable computational and communicational performance to many other protocols with similar security attributes, of which their security is based on costly bilinear pairings. The protocol's notion was inspired by McCullagh et al. and Chen-Kudla, in regard to escrow-free and multi-PKG key agreement ideas. In particular, the scheme captures perfect forward secrecy and key compromise impersonation resilience, which were lacking in McCullagh et al.'s study, as well as all other desirable security attributes, such as known key secrecy, unknown key-share resilience and no-key control. The merit in the proposed protocol is the achievement of all required security requirements with a relatively lower computational overhead than many other protocols because it precludes pairings.

  • PDF