• Title/Summary/Keyword: Unknown Parameters

Search Result 873, Processing Time 0.023 seconds

A new analytical approach to estimate the seismic tensile force of geosynthetic reinforcement respect to the uniform surcharge of slopes

  • Motlagh, Ali Tafreshi;Ghanbari, Ali;Maedeh, Pouyan Abbasi;Wu, Wei
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.687-699
    • /
    • 2018
  • This paper investigates the pseudo-static analysis of reinforced slopes with geosynthetics under the influence of the uniform surcharge to evaluate the maximum tensile force of reinforcements. The analytical approach has basically been used to develop the new practical procedure to estimate both tensile force and its distribution in the height of the slope. The base of developed relationships has been adapted from the conventional horizontal slice method. The limit equilibrium framework and the assumptions of log-spiral failure surface have directly been used for proposed analytical approach. A new analytical approach considering a single layer of non-cohesion soil and the influence of uniform surcharge has been extracted from the 5n equation and 5n unknown parameters. Results of the proposed method illustrated that the location of the surcharge, amount of internal friction and the seismic coefficient have the remarkable effect on the tensile force of reinforcement and might be 2 times increasing on it. Furthermore, outcomes show that the amount of tensile force has directly until 2 times related to the amount of slope angle and its height range. Likewise, it is observed that the highest value of the tensile force in case of slope degree more than 60-degree is observed on the lower layers. While in case of less degree the highest amount of tensile force has been reported on the middle layers and extremely depended to the seismic coefficient. Hence, it has been shown that the tensile force has increased more than 6 times compared with the static condition. The obtained results of the developed procedure were compared with the outcomes of the previous research. A good agreement has been illustrated between the amount results of developed relationships and outcomes of previous research. Maximum 20 and 25 percent difference have been reported in cases of static and seismic condition respectively.

Pedestrian-Based Variational Bayesian Self-Calibration of Surveillance Cameras (보행자 기반의 변분 베이지안 감시 카메라 자가 보정)

  • Yim, Jong-Bin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1060-1069
    • /
    • 2019
  • Pedestrian-based camera self-calibration methods are suitable for video surveillance systems since they do not require complex calibration devices or procedures. However, using arbitrary pedestrians as calibration targets may result in poor calibration accuracy due to the unknown height of each pedestrian. To solve this problem in the real surveillance environments, this paper proposes a novel Bayesian approach. By assuming known statistics on the height of pedestrians, we construct a probabilistic model that takes into account uncertainties in both the foot/head locations and the pedestrian heights, using foot-head homology. Since solving the model directly is infeasible, we use variational Bayesian inference, an approximate inference algorithm. Accordingly, this makes it possible to estimate the height of pedestrians and to obtain accurate camera parameters simultaneously. Experimental results show that the proposed algorithm is robust to noise and provides accurate confidence in the calibration.

Investigation of the dorsolateral branch of the posterior intercostal artery for use as the pedicle of a free flap: A cadaveric study and case series

  • Nam, Su Bong;Seo, Jung Yeol;Park, Tae Seo;Sung, Ji Yoon;Kim, Joo Hyoung;Lee, Jae Woo;Kim, Min Wook;Oh, Heung Chan
    • Archives of Plastic Surgery
    • /
    • v.46 no.1
    • /
    • pp.39-45
    • /
    • 2019
  • Background The dorsolateral branch of the posterior intercostal artery (DLBPI) can be easily found while harvesting a latissimus dorsi (LD) musculocutaneous flap for breast reconstruction. However, it remains unknown whether this branch can be used for a free flap and whether this branch alone can provide perfusion to the skin. We examined whether the DLBPI could be reliably found and whether it could provide sufficient perfusion. Methods We dissected 10 fresh cadavers and counted DLBPIs with a diameter larger than 2 mm. For each DLBPI, the following parameters were measured: distance from the lateral margin of the LD muscle, level of the intercostal space, distance from the spinal process, and distance from the inferior angle of the scapula. Results The DLBPI was easily found in all cadavers and was reliably located in the specified area. The average number of DLBPIs was 1.65. They were located between the seventh and eleventh intercostal spaces. The average length of the DLBPI between the intercostal space and the LD muscle was 4.82 cm. To assess the perfusion of the DLBPIs, a lead oxide mixture was injected through the branch and observed using X-rays, and it showed good perfusion. Conclusions The DLBPI can be used as a pedicle in free flaps for small defects. DLBPI flaps have some limitations, such as a short pedicle. However, an advantage of this branch is that it can be reliably located through simple dissection. For women, it has the advantage of concealing the donor scar underneath the bra band.

Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron

  • Yaylaci, Murat;Yayli, Mujgen;Yaylaci, Ecren Uzun;Olmez, Hasan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.585-597
    • /
    • 2021
  • This paper presents a comparative study of analytical method, finite element method (FEM) and Multilayer Perceptron (MLP) for analysis of a contact problem. The problem consists of a functionally graded (FG) layer resting on a half plane and pressed with distributed load from the top. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. The problem is reduced a system of integral equation in which the contact pressure are unknown functions. The numerical solution of the integral equation was carried out with Gauss-Jacobi integration formulation. Secondly, finite element model of the problem is constituted using ANSYS software and the two-dimensional analysis of the problem is carried out. The results show that contact areas and the contact stresses obtained from FEM provide boundary conditions of the problem as well as analytical results. Thirdly, the contact problem has been extended based on the MLP. The MLP with three-layer was used to calculate the contact distances. Material properties and loading states were created by giving examples of different values were used at the training and test stages of MLP. Program code was rewritten in C++. As a result, average deviation values such as 0.375 and 1.465 was obtained for FEM and MLP respectively. The contact areas and contact stresses obtained from FEM and MLP are very close to results obtained from analytical method. Finally, this study provides evidence that there is a good agreement between three methods and the stiffness parameters has an important effect on the contact stresses and contact areas.

The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory

  • Alwabli, Afaf S.;Kaci, Abdelhakim;Bellifa, Hichem;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Alzahrani, Dhafer A.;Abulfaraj, Aala A.;Bourada, Fouad;Benrahou, Kouider Halim;Tounsi, Abdeldjebbar;Mahmoud, S.R.;Hussain, Muzamal
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.15-24
    • /
    • 2021
  • Microtubules (MTs) are the main part of the cytoskeleton in living eukaryotic cells. In this article, a mechanical model of MT buckling, considering the modified strain gradient theory, is analytically examined. The MT is assumed as a cylindrical beam and a new single variable trigonometric beam theory is developed in conjunction with a modified strain gradient model. The main benefit of the present formulation is shown in its new kinematic where we found only one unknown as the Euler-Bernoulli beam model, which is even less than the Timoshenko beam model. The governing equations are deduced by considering virtual work principle. The effectiveness of the present method is checked by comparing the obtained results with those reported by other higher shear deformation beam theory involving a higher number of unknowns. It is shown that microstructure-dependent response is more important when material length scale parameters are closer to the outer diameter of MTs. Also, it can be confirmed that influences of shear deformation become more considerable for smaller shear modulus and aspect ratios.

Impact of Various Feedstock Attributes on the Social Acceptance on Bioethanol Promotion in South Korea (바이오에탄올 보급에 대한 사회적 수용성 분석: 바이오에탄올 원료 속성을 중심으로)

  • Li, Dmitriy D.;Bae, Jeong Hwan
    • Environmental and Resource Economics Review
    • /
    • v.30 no.1
    • /
    • pp.49-77
    • /
    • 2021
  • This study uses a choice experiment approach to examine whether different types of feedstocks as well as other attributes such as the cost of bioethanol, bioethanol blending ratio, and government support policies affect consumers' biofuel preferences. We apply a standard conditional logit model, a mixed logit model (MLM), and individual coefficient estimation model (ICM) to estimate the parameters of the investigated attributes. The results show that people prefer domestic and non-food feedstock, along with tax exemption as a support policy. All the attributes show unobservable preference heterogeneity in the MLM and ICM. In particular, willingness to pay for attributes are higher in the genetically modified (GM) feedstock-unknown group than in the known one. We show the importance of using domestic and non-food feedstocks and managing GM feedstocks carefully to avoid consumer resistance when producing bioethanol in South Korea.

Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position

  • Hachemi, Houari;Bousahla, Abdelmoumen Anis;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.51-64
    • /
    • 2021
  • This paper presents a high-order shear and normal deformation theory for the bending of FGM plates. The number of unknowns and governing equations of the present theory is reduced, and hence makes it simple to use. Unlike any other theory, the number of unknown functions involved in displacement field is only four, as against five or more in the case of other shear and normal deformation theories. Based on the novel shear and normal deformation theory, the position of neutral surface is determined and the governing equilibrium equations based on neutral surface are derived. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. Navier-type analytical solution is obtained for functionally graded plate subjected to transverse load for simply supported boundary conditions. The accuracy of the present theory is verified by comparing the obtained results with other quasi-3D higher-order theories reported in the literature. Other numerical examples are also presented to show the influences of the volume fraction distribution, geometrical parameters and power law index on the bending responses of the FGM plates are studied.

Long-gap Filling Method for the Coastal Monitoring Data (해양모니터링 자료의 장기결측 보충 기법)

  • Cho, Hong-Yeon;Lee, Gi-Seop;Lee, Uk-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.333-344
    • /
    • 2021
  • Technique for the long-gap filling that occur frequently in ocean monitoring data is developed. The method estimates the unknown values of the long-gap by the summation of the estimated trend and selected residual components of the given missing intervals. The method was used to impute the data of the long-term missing interval of about 1 month, such as temperature and water temperature of the Ulleungdo ocean buoy data. The imputed data showed differences depending on the monitoring parameters, but it was found that the variation pattern was appropriately reproduced. Although this method causes bias and variance errors due to trend and residual components estimation, it was found that the bias error of statistical measure estimation due to long-term missing is greatly reduced. The mean, and the 90% confidence intervals of the gap-filling model's RMS errors are 0.93 and 0.35~1.95, respectively.

Heavily T2-Weighted Magnetic Resonance Myelography as a Safe Cerebrospinal Fluid Leakage Detection Modality for Nontraumatic Subdural Hematoma

  • An, Sungjae;Jeong, Han-Gil;Seo, Dongwook;Jo, Hyunjun;Lee, Si Un;Bang, Jae Seung;Oh, Chang Wan;Kim, Tackeun
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Objective : Nontraumatic subdural hematoma (SDH) is a common disease, and spinal cerebrospinal fluid (CSF) leakage is a possible etiology of unknown significance, which is commonly investigated by several invasive studies. This study demonstrates that heavily T2-weighted magnetic resonance myelography (HT2W-MRM) is a safe and clinically effective imaging modality for detecting CSF leakage in patients with nontraumatic SDH. Methods : All patients who underwent HT2W-MRM for nontraumatic SDH workup at our institution were searched and enrolled in this study. Several parameters were measured and analyzed, including patient demographic data, initial modified Rankin Scale (mRS) score upon presentation, SDH bilaterality, hematoma thickness upon presentation, CSF leakage sites, treatment modalities, follow-up hematoma thickness, and follow-up mRS score. Results : Forty patients were identified, of which 22 (55.0%) had CSF leakage at various spinal locations. Five patients (12.5%) showed no change in mRS score, whereas the remaining (87.5%) showed decreases in follow-up mRS scores. In terms of the overall hematoma thickness, four patients (10.0%) showed increased thickness, two (5.0%) showed no change, 32 (80.0%) showed decreased thickness, and two (5.0%) did not undergo follow-up imaging for hematoma thickness measurement. Conclusion : HT2W-MRM is not only safe but also clinically effective as a primary diagnostic imaging modality to investigate CSF leakage in patients with nontraumatic SDH. Moreover, this study suggests that CSF leakage is a common etiology for nontraumatic SDH, which warrants changes in the diagnosis and treatment strategies.

Assessment of deformations and internal forces in the suspension bridge under eccentric live loads: Analytical algorithm

  • Zhang, Wenming;Lu, Xiaofan;Chang, Jiaqi;Tian, Genmin;Xia, Lianfeng
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.749-765
    • /
    • 2021
  • Suspension bridges bear large eccentric live loads in rush hours when most vehicles travel in one direction on the left or right side of the bridge. With the increasing number and weight of vehicles and the girder widening, the eccentric live load effect on the bridge behavior, including bending and distortion of the main girder, gets more pronounced, even jeopardizing bridge safety. This study proposes an analytical algorithm based on multi-catenary theory for predicting the suspension bridge responses to eccentric live load via the nonlinear generalized reduced gradient method. A set of governing equations is derived to solve the following unknown values: the girder rigid-body displacement in the longitudinal direction; the horizontal projection lengths of main cable's segments; the parameters of catenary equations and horizontal forces of the side span cable segments and the leftmost segments of middle span cables; the suspender tensions and the bearing reactions. Then girder's responses, including rigid-body displacement in the longitudinal direction, deflections, and torsion angles; suspenders' responses, including the suspender tensions and the hanging point displacements; main cables' responses, including the horizontal forces of each segment; and the longitudinal displacement of the pylons' tower top under eccentric load can be calculated. The response of an exemplar suspension bridge with three spans of 168, 548, and 168 m is calculated by the proposed analytical method and the finite element method in two eccentric live load cases, and their results prove the former's feasibility. The nonuniform distribution of the live load in the lateral direction is shown to impose a greater threat to suspension bridge safety than that in the longitudinal direction, while some other specific features revealed by the proposed method are discussed in detail.