• Title/Summary/Keyword: University of California

Search Result 2,267, Processing Time 0.032 seconds

Evaluation and treatment of facial feminization surgery: part II. lips, midface, mandible, chin, and laryngeal prominence

  • Dang, Brian N.;Hu, Allison C.;Bertrand, Anthony A.;Chan, Candace H.;Jain, Nirbhay S.;Pfaff, Miles J.;Lee, James C.;Lee, Justine C.
    • Archives of Plastic Surgery
    • /
    • v.49 no.1
    • /
    • pp.5-11
    • /
    • 2022
  • Facial feminization surgery (FFS) refers to a set of procedures aimed at altering the features of a masculine face to achieve a more feminine appearance. In the second part of this two-part series, assessment and operations involving the midface, mandible, and chin, as well as soft tissue modification of the nasolabial complex and chondrolaryngoplasty, are discussed. Finally, we provide a review of the literature on patient-reported outcomes in this population following FFS and suggest a path forward to optimize care for FFS patients.

Reducing frame rate and pulse rate for routine diagnostic cerebral angiography: ALARA principles in practice

  • Arvin R. Wali;Sarath Pathuri;Michael G. Brandel;Ryan W. Sindewald;Brian R. Hirshman;Javier A. Bravo;Jeffrey A. Steinberg;Scott E. Olson;Jeffrey S. Pannell;Alexander Khalessi;David Santiago-Dieppa
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • v.26 no.1
    • /
    • pp.46-50
    • /
    • 2024
  • Objective: Diagnostic cerebral angiograms (DCAs) are widely used in neurosurgery due to their high sensitivity and specificity to diagnose and characterize pathology using ionizing radiation. Eliminating unnecessary radiation is critical to reduce risk to patients, providers, and health care staff. We investigated if reducing pulse and frame rates during routine DCAs would decrease radiation burden without compromising image quality. Methods: We performed a retrospective review of prospectively acquired data after implementing a quality improvement protocol in which pulse rate and frame rate were reduced from 15 p/s to 7.5 p/s and 7.5 f/s to 4.0 f/s respectively. Radiation doses and exposures were calculated. Two endovascular neurosurgeons reviewed randomly selected angiograms of both doses and blindly assessed their quality. Results: A total of 40 consecutive angiograms were retrospectively analyzed, 20 prior to the protocol change and 20 after. After the intervention, radiation dose, radiation per run, total exposure, and exposure per run were all significantly decreased even after adjustment for BMI (all p<0.05). On multivariable analysis, we identified a 46% decrease in total radiation dose and 39% decrease in exposure without compromising image quality or procedure time. Conclusions: We demonstrated that for routine DCAs, pulse rate of 7.5 with a frame rate of 4.0 is sufficient to obtain diagnostic information without compromising image quality or elongating procedure time. In the interest of patient, provider, and health care staff safety, we strongly encourage all interventionalists to be cognizant of radiation usage to avoid unnecessary radiation exposure and consequential health risks.