• Title/Summary/Keyword: University of Birmingham

Search Result 184, Processing Time 0.024 seconds

Fabrication and Characterisation of a Novel Pellicular Adsorbent Customised for the Effectvie Fluidised Bed Adsorption of Protein Products

  • Sun, Yam;Pacek, Andrzej W.;Nienow, Alvin W.;Lyddiatt, Andrew
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.6
    • /
    • pp.419-425
    • /
    • 2001
  • A dense pellicular solid matrix has been fabricated by coating 4% agarose gel on to dense zironia-silica(ZS) spheres by watr-in-oil emulsification . The agarose evenly laminated the ZS bead to a depth of 30㎛, and the resultin gpellicular assembly was characterised by densities up to 2.39g/mL and a mean particle dimeter of 136 ㎛. In comparative fluidisation tests, the pellicular solid phase exhibited a two-fold greater flow velocity than commercial benchmark ad-sorbents necessary to achieve common values of bed expansion. Furthermore, the perlicular parti-cles were characterised by improved qualities of chromatographic behaviour, particularly with re-spect to a three-fold increase in the apparent effective diffusivity of lysozyme within a pellicular assembly modified with Cibacron Blue 3GA. The properties of rapid protein adsorption/desorp-tion were attributed to the physical design and pellicular deployment of the reactive surface in the solid phase. When combined with enhanced feedstock throughput, such practical advantages recommend the pellicular assembly as a base matrix for the selective recovery of protein products from complex, particulate feedstocks(whole fermentation broths, cell disruptates and biological extracts).

  • PDF

Functional Implications in Apoptosis by Interferon Inducible Gene Product 1-8D, the Binding Protein to Adenovirus Preterminal Protein

  • Joung, In-Sil;Angeletti, Peter C.;Engler, Jeffrey A.
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.295-299
    • /
    • 2003
  • Adenovirus (Ad) precursor to the terminal protein (pTP) plays an essential roles in the viral DNA replication. Ad pTP serves as a primer for the synthesis of a new DNA strand during the initiation step of replication. In addition, Ad pTP forms organized spherical replication foci on the nuclear matrix (NM) and anchors the viral genome to the NM. Here we identified the interferon inducible gene product 1-8D (Inid) as a pTP binding protein by using a two-hybrid screen of a HeLa cDNA library. Of the clones obtained in this assay, nine were identical to the Inid, a 13-kDa polypeptide that shares homology with genes 1-8U and Leu-13/9-27, most of which have little known functions. The entire open reading frame (ORF) of Inid was cloned into the tetracycline inducible expression vector in order to determine the biological functions related with adenoviral infection. When Inid was introduced to the cells along with adenoviruses, fifty to sixty percent of Ad-infected cells expressing Inid had rounded morphology, which was suggestive of apoptosis. Results from the terminal deoxynucleotidyl transferase (TdT) and DNA fragmentation assays confirmed that Inid induces apoptosis in Ad-infected or in uninfected cells. The Inid binding to pTP may target the cell for apoptotic destruction as a host defense mechanism against the viral infection.

Exploring Factors Associated With Successful Nonpharmacological Interventions for People With Dementia

  • HyounKyoung Grace Park;Suzanne E. Perumean-Chaney;Alfred A. Bartolucci
    • Dementia and Neurocognitive Disorders
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • Background and purpose: We investigated existing nonpharmacological programs for people with dementia (PWD) to explore critical factors related to the effectiveness of these types of programs. Methods: We conducted a qualitative systematic literature review to identify nonpharmacological intervention programs developed for PWD and reviewed 36 randomized controlled trials. Among several outcomes reported in each study, we focused on the most common outcomes including quality of life (QoL), neuropsychiatric symptoms, depression, agitation, and cognition for further review. Results: Several factors were identified that might affect the outcomes of nonpharmacological interventions for PWD including study design, characteristics of the intervention, maintaining research participants, heterogeneity issues, and implementation fidelity. About half of studies in this review reported positive program effects on their targeted outcomes such as Well-being and Health for PWD on improving quality of life, neuropsychiatric symptoms and agitation; cognitive stimulation therapy on QoL, neuropsychiatric symptoms and cognition; and a stepwise multicomponent intervention on neuropsychiatric symptoms, depression and agitation. Conclusions: We found some programs even with a rigorous study design did not produce expected outcomes while other programs with poor designs reported positive outcomes, which necessitates further investigation on the validity of the assessments. Factors such as individual tailored and customized interventions, promoting social interactions, ease of administration and compatibility of interventions, and developing program theory need to be considered when developing nonpharmacological intervention programs.

Integration of Palliative Care in the Hospital Setting

  • Wozencraft, Colin;Tucker, Rodney O.;Howell, Stephen
    • Journal of Hospice and Palliative Care
    • /
    • v.15 no.4
    • /
    • pp.188-192
    • /
    • 2012
  • Palliative medicine has shown demonstrated benefit for patients with serious illness, their families, and hospital systems. As such, the demand for palliative care services is growing at a fast pace, and health care facilities frequently struggle to develop and implement effective and sustainable methods of providing this care. As with any new system, challenges and barriers naturally exist to instituting palliative care. Undertaking careful assessment, planning, and resource allocation can provide the greatest likelihood of success when developing these novel yet much needed models of care. This summary paper offers a qualitative overview of the potential benefits and the rationale to implement robust palliative care systems. We briefly review the history of palliative medicine in the broadest sense and address several seminal works from the US palliative care literature. Core practices to establish and advance palliative medicine are suggested. Commentary is provided on some of the particular barriers to palliative system development that may need to be addressed in the context of Korean medical culture. Collectively, we hope this overview can contribute to a framework within which such research and development can occur, leading to increasingly effective and sustainable palliative medicine in Korea.

Prediction of scour around single vertical piers with different cross-section shapes

  • Bordbar, Amir;Sharifi, Soroosh;Hemida, Hassan
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.43-58
    • /
    • 2021
  • In the present work, a 3D numerical model is proposed to study local scouring around single vertical piers with different cross-section shapes under steady-current flow. The model solves the flow field and sediment transport processes using a coupled approach. The flow field is obtained by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations in combination with the k-ω SST turbulence closure model and the sediment transport is considered using both bedload and suspended load models. The proposed model is validated against the empirical measurements of local scour around single vertical piers with circular, square, and diamond cross-section shapes obtained from the literature. The measurement of scour depth in equilibrium condition for the simulations reveal the differences of 4.6%, 6.7% and 13.1% from the experimental measurements for the circular, square, and diamond pier cases, respectively. The model displayed a remarkable performance in the prediction of scour around circular and square piers where horseshoe vortices (HSVs) have a leading impact on scour progression. On the other hand, the maximum deviation was found in the case of the diamond pier where HSVs are weak and have minimum impact on the formation of local scour. Overall, the results confirm that the prediction capability of the present model is almost independent of the strength of the formed HSVs and pier cross-section shapes.

Innovative approach to determine the minimum wall thickness of flexible buried pipes

  • Alzabeebee, Saif;Chapman, David N.;Faramarzi, Asaad
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.755-767
    • /
    • 2018
  • This paper uses a finite element based approach to provide a comprehensive understanding to the behaviour and the design performance of buried uPVC pipes with different diameters. It also investigates pipes with good and poor haunch support and proposes minimum safe wall thicknesses for these pipes. The results for pipes with good haunch support showed that the maximum pipe wall stress and deformation increase as the diameter increased. The results for pipes with poor haunch support showed an increase in the dependency of the developed vertical displacement on the haunch support as the diameter or the backfill height increased. Additionally, poor haunch support was found to increase the soil pressure, with the effect increasing as the diameter increased. The design of uPVC pipes for both poor and good haunch support was found to be governed by critical buckling. A key outcome is a new design chart for the minimum wall thickness, which enables the robust and economic design of buried uPVC pipes. Importantly, the methodology adopted in this study can also be applied to the design of flexible pipes manufactured from other materials, buried under different conditions and subjected to different loading arrangements.

A review on modelling and monitoring of railway ballast

  • Ngamkhanong, Chayut;Kaewunruen, Sakdirat;Baniotopoulos, Charalampos
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.195-220
    • /
    • 2017
  • Nowadays, railway system plays a significant role in transportation, conveying cargo, passengers, minerals, grains, and so forth. Railway ballasted track is a conventional railway track as can be seen all over the world. Ballast, located underneath the sleepers, is the most important elements on ballasted track, which has many functions and requires routine maintenance. Ballast needs to be maintained frequently to prevent rail buckling, settlement, misalignment so that ballast has to be modelled accurately. Continuum model was introduced to model granular material and was extended in ballast. However, ballast is a heterogeneous material with highly nonlinear behaviour. Hence, ballast could not be modelled accurately in continuum model due to the discontinuities nature and material degradation of ballast. Discrete element modelling (DEM) is proposed as an alternative approach that provides insight into constitutive model, realistic particle, and contact algorithm between each particle. DEM has been studied in many recent decades. However, there are limitations due to the high computational time and memory consumption, which cause the lack of using in high range. This paper presents a review of recent ballast modelling with benefits and drawbacks. Ballast particles are illustrated either circular, circular crump, spherical, spherical crump, super-quadric, polygonal and polyhedral. Moreover, the gaps and limitations of previous studies are also summarized. The outcome of this study will help the understanding into different ballast modelling and particle. The insight information can be used to improve ballast modelling and monitoring for condition-based track maintenance.

Free vibrations of precast modular steel-concrete composite railway track slabs

  • Kimani, Stephen Kimindiri;Kaewunruen, Sakdirat
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.113-128
    • /
    • 2017
  • This paper highlights a study undertaken on the free vibration of a precast steel-concrete composite slab panel for track support. The steel-concrete composite slab track is an evolvement from the slab track, a form of ballastless track which is becoming increasingly attractive to asset owners as they seek to reduce lifecycle costs and deal with increasing rail traffic speeds. The slender nature of the slab panel due to its reduced depth of construction makes it susceptible to vibration problems. The aim of the study is driven by the need to address the limited research available to date on the dynamic behaviour of steel-concrete composite slab panels for track support. Free vibration analysis of the track slab has been carried out using ABAQUS. Both eigenfrequencies and eigenmodes have been extracted using the Lanczos method. The fundamental natural frequencies of the slab panel have been identified together with corresponding mode shapes. To investigate the sensitivity of the natural frequencies and mode shapes, parametric studies have been established, considering concrete strength and mass and steel's modulus of elasticity. This study is the world first to observe crossover phenomena that result in the inversion of the natural orders without interaction. It also reveals that replacement of the steel with aluminium or carbon fibre sheeting can only marginally reduce the natural frequencies of the slab panel.

Damped frequencies of precast modular steel-concrete composite railway track slabs

  • Kaewunruen, Sakdirat;Kimani, Stephen Kimindiri
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.427-442
    • /
    • 2017
  • This paper presents unprecedented damped oscillation behaviours of a precast steel-concrete composite slab panel for track support. The steel-concrete composite slab track is an innovative slab track, a form of ballastless track which is becoming increasingly attractive to asset owners as they seek to reduce lifecycle costs and deal with increasing rail traffic speeds. The slender nature of the slab panel due to its reduced depth of construction makes it susceptible to vibration problems. The aim of the study is driven by the need to address the limited research available to date on the dynamic behaviour of steel-concrete composite slab panels for track support. Free vibration analysis of the track slab has been carried out using ABAQUS. Both undamped and damped eigenfrequencies and eigenmodes have been extracted using the Lancsoz method. The fundamental natural frequencies of the slab panel have been identified together with corresponding mode shapes. To investigate the sensitivity of the natural frequencies and mode shapes, parametric studies have been established, considering concrete strength and mass and steel's modulus of elasticity. This study is the world first to observe crossover phenomena that result in the inversion of the natural orders without interaction. It also reveals that replacement of the steel with aluminium or carbon fibre sheeting can only marginally reduce the natural frequencies of the slab panel.