KSII Transactions on Internet and Information Systems (TIIS)
/
제10권10호
/
pp.4787-4807
/
2016
Although the dense interconnection datacenter networks (DCNs) (e.g. FatTree) provide multiple paths and high bisection bandwidth for each server pair, the single-path TCP (SPT) and ECMP which are widely used currently neither achieve high bandwidth utilization nor have good load balancing. Due to only one available transmission path, SPT cannot make full use of all available bandwidth, while ECMP's random hashing results in many collisions. In this paper, we present OFPT, an OpenFlow based Parallel Transport framework, which integrates precise routing and scheduling for better load balancing and higher network throughput. By adopting OpenFlow based centralized control mechanism, OFPT computes the optimal path and bandwidth provision for each flow according to the global network view. To guarantee high throughput, OFPT dynamically schedules flows with Seamless Flow Migration Mechanism (SFMM), which can avoid packet loss in flow rerouting. Finally, we test OFPT on Mininet and implement it in a real testbed. The experimental results show that the average network throughput in OFPT is up to 97.5% of bisection bandwidth, which is higher than ECMP by 36%. Besides, OFPT decreases the average flow completion time (AFCT) and achieves better scalability.
Hossain, S.M. Emdad;Fageeri, Sallam Osman;Soosaimanickam, Arockiasamy;Kausar, Mohammad Abu;Said, Aiman Moyaid
International Journal of Computer Science & Network Security
/
제22권7호
/
pp.165-170
/
2022
Lying is nuisance to all, and all liars knows it is nuisance but still keep on lying. Sometime people are in confusion how to escape from or how to detect the liar when they lie. In this research we are aiming to establish a dynamic platform to identify liar by using video analysis especially by calculating the ratio of changes in their appearance when they lie. The platform will be developed using a machine learning algorithm along with the dynamic classifier to classify the liar. For the experimental analysis the dataset to be processed in two dimensions (people lying and people tell truth). Both parameter of facial appearance will be stored for future identification. Similarly, there will be standard parameter to be built for true speaker and liar. We hope this standard parameter will be able to diagnosed a liar without a pre-captured data.
Jiyun Hong;Jiwon Lee;Somin Lee;Eun Ko;Gyubin Kim;Jungwoon Kang;Mincheol Kim
Journal of information and communication convergence engineering
/
제22권3호
/
pp.221-230
/
2024
The aim of this study is to investigate the automatic recognition and analysis of Jeju marine-life images using artificial intelligence (AI) technology. The dataset of marine-life images was prepared using tools such as Python, TensorFlow, and Google Colab (Google Colaboratory). We also developed models by training deep learning AI in image recognition to automatically recognize the species found in these images and extract their associated information, such as taxonomy, characteristics, and distribution. This study is innovative in that it uses deep learning technology combined with imagerecognition technology for marine biodiversity research. In addition, these results will lead to the development of the marine-life industry in Jeju by supporting marine environment monitoring and marine resource conservation. Furthermore, this study is anticipated to contribute to academic advancement, specifically in the study of marine species diversity.
Recently, many enterprises are adopting EAI (Enterprise Application Integration) technologies for integrating heterogeneous enterprise information systems. Among EAI levels, data-level integration is relatively straightforward and most popular. However, most commercial solutions provide complex functionalities and are expensive for implementing the data integration tasks at the small & medium enterprises. Also, they have their own proprietary architectures and have a restricted interoperability. Proposed in this paper is the development of a data integration middleware for facilitating data exchanges between the heterogeneous information systems. The main feature of this middleware is a explicit mapping of meta data about the relationships between source and target data. Based on this explicit mapping, users who do not have expertise in information technology at the small & medium enterprises can easily execute data exchange tasks among various information systems.
International Journal of Fuzzy Logic and Intelligent Systems
/
제5권3호
/
pp.253-258
/
2005
In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. To identify the structure of fuzzy rules we use genetic algorithms (GAs). Granulation of information with the aid of Hard C-Means (HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.
The specification of the Home Evolved NodeB (Home-eNB), which is a small base station designed for use in residential or small business environment, is currently ongoing in 3GPP LTE (Long Term Evolution) systems. One of the key requirements for its feasibility in the LTE system is the mobility management in the deployment of the numerous Home-eNBs and other 3GPP network. In this paper, we overview the characteristic of Home-eNB and also describe the mobility management issues and the related approaches in 3GPP LTE based Home-eNB systems.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권4호
/
pp.1538-1552
/
2021
Machine learning models are vulnerable to adversarial examples generated by adding a deliberately designed perturbation to a benign sample. Particularly, for automatic speech recognition (ASR) system, a benign audio which sounds normal could be decoded as a harmful command due to potential adversarial attacks. In this paper, we focus on the countermeasures against audio adversarial examples. By analyzing the characteristics of ASR systems, we find that frame offsets with silence clip appended at the beginning of an audio can degenerate adversarial perturbations to normal noise. For various scenarios, we exploit frame offsets by different strategies such as defending, detecting and hybrid strategy. Compared with the previous methods, our proposed method can defense audio adversarial example in a simpler, more generic and efficient way. Evaluated on three state-of-the-arts adversarial attacks against different ASR systems respectively, the experimental results demonstrate that the proposed method can effectively improve the robustness of ASR systems.
International Journal of Computer Science & Network Security
/
제22권11호
/
pp.319-323
/
2022
Handwritten text recognition is one of the active research areas nowadays. The progress in this field differs in every language. For example, the progress in Arabic handwritten text recognition is still insignificant and needs more attentions and efforts. One of the most important fields in this is Arabic handwritten manuscript text recognition which focuses in extracting text from historical manuscripts. For eons, ancients used manuscripts to write everything. Nowadays, there are millions of manuscripts all around the world. There are two main challenges in dealing with these manuscripts. The first one is that they are at the risk of damage since they are written in primitive materials, the second challenge is due to the difference in writing styles, hence most people are unable to read these manuscripts easily. Therefore, we discuss in this study different papers that are related to this important research field.
International Journal of Computer Science & Network Security
/
제22권12호
/
pp.132-138
/
2022
Due to the impacts of the current pandemic COVID-19 and the continuation of studying online. There is an urgent need for an effective and efficient education platform to help with the continuity of studying online. Therefore, the question bank system (QB) is introduced. The QB system is designed as a website to create a single platform used by faculty members in universities to generate questions and store them in a bank of questions. In addition to allowing them to add two types of questions, to help the lecturer create exams and present the results of the students to them. For the implementation, two languages were combined which are PHP and Python to generate questions by using Artificial Intelligence (AI). These questions are stored in a single database, and then these questions could be viewed and included in exams smoothly and without complexity. This paper aims to help the faculty members to reduce time and efforts by using the Question Bank System by using AI and Natural Language Processing (NLP) to extract and generate questions from given text. In addition to the tools used to create this function such as NLTK and TextBlob.
Many organizations have developed their own traditional quality information systems. But, they think of it as one of the functional information systems not as a company-wide decision support information systems. A study on traditional quality information systems(QIS) has been conducted and a new conceptual framework of quality information system is proposed in this paper. In order to support enterprise wide total quality management aggressively, a new conceptual framework, named quality management support information system(QMSIS) is developed and proposed. This framework is based upon Malcolm Baldrige National Quality Award(MBNQA) model integrates management information system approach and traditional quality information system concept. In this model, organizational performance and process performance can be monitored to support managers , decision making about organizational quality management activities.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.