• Title/Summary/Keyword: Universal joint

Search Result 120, Processing Time 0.023 seconds

Investigation of the tensile behavior of joint filling under experimental test and numerical simulation

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi;Guo, Mengdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.243-258
    • /
    • 2022
  • In this paper, tensile behavior of joint filling has been investigated under experimental test and numerical simulation (particle flow code). Two concrete slabs containing semi cylinder hole were prepared. These slabs were attached to each other by glue and one cubic specimen with dimension of 19 cm×15 cm×6 cm was prepared. This sample placed in the universal testing machine where the direct tensile stress can be applied to this specimen by implementing a special type of load transferring device which converts the applied compressive load to that of the tensile during the test. In the present work, two different joint filling thickness i.e., 3 mm and 6 mm were prepared and tested in the laboratory to measure their direct tensile strengths. Concurrent with experimental test, numerical simulation was performed to investigate the effect of hole diameter, length of edge notch, filling thickness and filling length on the tensile behavior of joint filling. Model dimension was 19 cm×15 cm. hole diameter was change in four different values of 2.5 cm, 5 cm, 7.5 cm and 10 cm. glue lengths were different based on the hole diameter, i.e., 12.5 cm for hole diameter of 2.5 cm, 10 cm for hole diameter of 5 cm, 7.5 cm for hole diameter of 7.5 cm and 5 cm for hole diameter of 10 cm. length of edge notch were changed in three different value i.e., 10%, 30% and 50% of glue length. Filling thickness were changed in three different value of 3 mm, 6 mm and 9 mm. Tensile strengths of glue and concrete were 2.37 MPa and 6.4 MPa, respectively. The load was applied at a constant rate of 1 kg/s. Results shows that hole diameter, length of edge notch, filling thickness and filling length have important effect on the tensile behavior of joint filling. In fixed glue thinks and fixed joint length, the tensile strength was decreased by increasing the hole diameter. Comparing the results showed that the strength, failure mechanism and fracture patterns obtained numerically and experimentally were similar for both cases.

The Effect of Hold-Relax Technique and Cryotherapy on Delayed Onset Muscle Soreness (유지-이완기법과 냉치료가 지연성 근육통에 미치는 효과)

  • Kim, Jong-Man;Park, Jang-Sung;Kim, Won-Ho;Cynn, Heon-Seock;Kim, Yeon-Jung
    • Physical Therapy Korea
    • /
    • v.7 no.1
    • /
    • pp.22-31
    • /
    • 2000
  • Despite research to treat delayed onset muscle soreness (DOMS), no effective treatment has been reported. The purpose of this study is to investigate the effect of a hold-relax technique and cryotherapy on DOMS. Thirty-three subjects were randomly assigned to one of three treatment groups: control, hold-relax technique, or hold-relax technique and cryotherapy. DOMS was induced in the non-dominant biceps muscle through repeated eccentric contractions. Resting elbow joint position, flexion and extension (universal goniometer), pain (Visual Analogue Scale; VAS), and WBC count (blood analysis) were measured one hour before DOMS was induced and 24, 48, and 72 hours after DOMS was induced. The data were analyzed by repeated measure of two-way ANOVA. The results of this study were summarized as follows: 1) While analysis showed no significant differences between groups in relation to a resting elbow joint position, there were significant differences over time, especially at 24, 48 hours after DOMS was induced compared with resting elbow joint position before DOMS was induced. 2) While analysis showed no significant differences between groups in relation to range of flexion, there were significant differences between range of flexion before DOMS was induced and range of flexion 72 hours after DOMS was induced. 3) There were no significant differences between groups or over time in relation to range of extension. 4) While analysis showed no significant differences between groups in relation to VAS, there were significant differences over time in different hours. 5) There were no significant differences between groups or over time in relation to WBC count. 6) There were no interactions between groups or over time in all variables. This results suggested that hold-relax technique and cryotherapy were not effective to reduce DOMS.

  • PDF

Effect of soldering techniques and gapdistance on tensile strength of soldered Ni-Cr alloy joint

  • Lee, Sang-Yeob;Lee, Jong-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.4
    • /
    • pp.117-121
    • /
    • 2010
  • PURPOSE. The present study was intended to evaluate the effect of soldering techniques with infrared ray and gas torch under different gap distances (0.3 mm and 0.5 mm) on the tensile strength and surface porosity formation in Ni-Cr base metal alloy. MATERIALS AND METHODS. Thirty five dumbbell shaped Ni-Cr alloy specimens were prepared and assigned to 5 groups according to the soldering method and the gap distance. For the soldering methods, gas torch (G group) and infrared ray (IR group) were compared and each group was subdivided by corresponding gap distance (0.3 mm: G3 and IR3, 0.5 mm: G5, IR5). Specimens of the experimental groups were sectioned in the middle with a diamond disk and embedded in solder blocks according to the predetermined distance. As a control group, 7 specimens were prepared without sectioning or soldering. After the soldering procedure, a tensile strength test was performed using universal testing machine at a crosshead speed 1 mm/min. The proportions of porosity on the fractured surface were calculated on the images acquired through the scanning electronic microscope. RESULTS. Every specimen of G3, G5, IR3 and IR5 was fractured on the solder joint area. However, there was no significant difference between the test groups (P > .05). There was a negative correlation between porosity formation and tensile strength in all the specimens in the test groups (P < .05). CONCLUSION. There was no significant difference in ultimate tensile strength of joints and porosity formations between the gas-oxygen torch soldering and infrared ray soldering technique or between the gap distance of 0.3 mm and 0.5 mm.

The Mechanical Properties of Trabecular Bone in Knee Joint (무릎관절 해면뼈의 기계적 물성)

  • Kwak, Dai-Soon;Oh, Taek-Yul;Han, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.131-135
    • /
    • 2009
  • In this study, we performed the compressive strength test of trabecular bone in knee joint for measuring the elastic modulus and ultimate strength. The main knee joint is femorotibial articulation between the lateral and medial femorotibial condyle. In the case of osteoarthritis, some patients have only medial condylar osteoarthritis. We performed the mechanical test for comparison the difference of the each condylar strength. We used diamond core-drill and linear precision saw for making the specimens. Specimens were cored from both condyle in distal femur and proximal tibia in fresh cadaver (male 10, female 12), and tested by universal test machine with temperature control saline circulation system. Results of the test in distal femoral parts, averaged elastic modulus was $360.61{\pm}159.40MPa$ for male, $150.89{\pm}70.65MPa$ for female. Averaged ultimate strength was $6.79{\pm}2.91MPa$ for male, $2.89{\pm}1.31MPa$ for female. Male was 2.4 times stronger than female. In the proximal tibial parts, averaged elastic modulus was $108.80{\pm}52.88MPa$ for male, $73.45{\pm}55.06MPa$ for female. Averaged ultimate strength was $2.59{\pm}1.39MPa$ for male, $1.75{\pm}1.16MPa$ for female. Male was 1.5 times stronger than female. In the distal femoral condyle, medial condyle had more strength than lateral condyle at middle region. But lateral condyle had more strength than medial condyle at anterior & posterior regions (p<0.02). In the proximal tibial condyle, medial condyle had more strength than lateral condyle. (p<0.01).

The Relationship Between the Range of Hip Rotation and the Quadriceps Angle in Subjects With and Without Flat Foot

  • Lee, Keun-hyo;Chon, Seung-chul
    • Physical Therapy Korea
    • /
    • v.25 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • Background: Alignment of the lower limb is an important factor, influencing balance and gait in kinematics and kinetics, in patients with and without a flat arched foot. Flat arched foot are associated with the range of motion (ROM) of the hip and alignments of the knee joints, is strongly influenced. Objects: The purpose of this research was to investigate the relationship between hip joint ROM and quadriceps angle (Q-angle), by dividing them into two groups according to the presence or absence of flat feet, using a navicular drop test (NDT) and resting calcaneal stance position (RCSP). Methods: Forty elderly patients were allocated to the experimental group (flat foot group, n1=20) or the control group (non-flat group, n2=20). Universal and digital goniometer, tractograph and tape measure were used to determine the related changes in the hip ROM, Q-angle, NDT and RCSP. Results: Data were analyzed using the Pearson correlation coefficients. Active internal ROM of the hip joint (right, r=.803, p<.001), (left, r=.951, p<.001) were highly correlated with NDT, and also, was moderately correlated with Q-angle (right, r=.562, p=.019), (left, r=.757, p<.001). Passive internal ROM of the hip joint (right, r=.742, p=.001), (left, r=.922, p<.001) were highly correlated with NDT, and also, was moderately correlated with RCSP (right, r=-.530, p=.029) and with Q-angle (right, r=.710, p=.001), (left, r=.698, p=.002) in the flat foot group. However, no strong correlation among the hip ROM, NDT, RCSP and Q-angle were found in the non-flat foot group. Conclusion: This research may provide evidence of the correlations between hip internal ROM and flat foot.

Comparison of Subtalar Joint Range of Motion and Dorsiflexor Muscle Activity Between Normal and Pes Planus Feet (정상발과 평발에서의 목말밑 관절가동범위와 등쪽굽힘근의 근활성도 비교)

  • Koh, Eun-Kyung;Jung, Do-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.2
    • /
    • pp.129-135
    • /
    • 2018
  • PURPOSE: The imbalance of pretibial muscles can be a factor contributing to the development of pes planus. However, no study has yet compared the muscle activity of the tibials anterior (TA) to that of the extensor digitorum longus (EDL). The purpose of this study was to determine whether there are differences in the electromyographic (EMG) TA and EDL amplitude indexes (AIs) between normal and pes planus feet. METHODS: A total of 14 subjects with normal feet and 15 subjects with bilateral pes planus participated in this study. TA and EDL muscle activities were measured using a wireless EMG system and the angles of ankle dorsiflexion and eversion of the subtalar joint were measured using a universal goniometer during active ankle dorsiflexion in the prone position. AI was calculated as follows: $\text{amplitude_{TA}-amplitude_{EDL}/(amplitude_{TA}+amplitude_{EDL})}/2{\times}100$. RESULTS: The AIs of the TA and EDL were significantly lower in pes planus feet than in normal feet (p<.05). The angle of subtalar eversion was significantly greater in pes planus feet than in normal feet during active ankle dorsiflexon (p<.05). However, there was no significant difference in the angle of ankle dorsiflexion between normal feet and pes planus feet (p>.05). CONCLUSION: This study showed that TA muscle activation was lower in pes planus feet than in normal feet, resulting from greater eversion range of motion during active ankle dorsiflexion. We suggest that the imbalance of ankle dorsiflexors must be considered in pes planus management.

Engineering Properties of Tire Treads for Soil Reinforcement (지반보강재로서 타이어 트레드의 공학적 특성)

  • Yoon, Yeowon;Cho, Sungsoo;Kim, Keunsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • In order to utilize treads of waste tire as reinforcement material it is necessary to know the interface friction angle between tread surfaces and soil and tensile strength of connection joint of tire treads. In this research large direct shear tests were performed to get the interface friction angle between the inner and outer surfaces of treads and soil for different degree of compaction. From the large direct shear tests, the ratio of interface friction angle to the shear friction angle of sand, ${\delta}/{\phi}$, were 1.06 in outside surface of tire tread and 0.93 in inside surface of tire tread. For weathered granite soil the ratio of interface friction angle was 0.98 and 0.92 for outside and inside of tread, respectively. Also tensile tests were performed using universal testing machine for the connection joint of treads and Tirecell units using bolts. The tensile strength of connection joint increased with the number of bolts and with the sizes of washers. Connection by polypropylene ropes showed lower strength than those of bolts.

  • PDF

Precise Measurement Method of Radial Artery Pulse Waveform using Robotic Applanation Tonometry Sensor (로보틱 토노메트리 센서를 이용한 요골 동맥 파형 정밀 측정 방법)

  • Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2017
  • In this paper, a novel measurement method of radial artery pulse waveform using robotic applanation tonometry (RAT) was present to reduce the errors by the pressing direction of the vessel. The RAT consisted of an array of pressure sensors and 2-axis tilt sensor, which was attached to the universal joint with a linear spring and five-DOF robotic manipulator with a one-axis force sensor. Using the RAT mechanism, the pulse sensor could be manipulated to perpendicularly pressurize the radial artery. A pilot experimental result showed that the proposed mechanism could find the optimal pressurization angles of the pulse sensor within ${\pm}3^{\circ}$standard deviations. Coefficient values of variation of maximum pulse peaks extracted from the pulse waveforms were 4.692, 6.994, and 11.039 % for three channels with the highest magnitudes. It is expected that the proposed method can be helpful to develop more precise tonometry system measuring the pulse waveform on the radial artery.

A UBET Analysis on the Lateral Extrusion Process of a Spider (스파이더의 측방 압출 공정에 대학 UBET해석)

  • Lee, Hee-In;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.174-181
    • /
    • 2001
  • An upper bound elemental technique(UBET) has been carried out to predict the forming load, the deformation pattern and the extrude length of the lateral extrusion of a spider for the automotive universal joint. For the upper bound analysis, a kinematically admissible velocity field(KAVF) is proposed. From the proposed velocity field, the upper bound load, the deformation pattern and the average length of the extruded billets are determined by minimizing the total energy consumption rate which is a function of unknown velocities at each element. Experiments are carried out with antimony-lead billets at room temperature using the rectangular shape punch. The theoretical prediction of the forming load, the deformation pattern and the extruded length are good in agreement with the experimental results.

  • PDF

The Development of an Early Production System off the Coast of Korea (한국형 해저원유 초기생산시스템 개발)

  • Yu, Byung-Kun
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.73-83
    • /
    • 1987
  • 한국형 해저원유 초기생산 시스템은 제주도 남쪽의 한.일 공동개발구역 및 이와 유사한 조건의 지역에서 소규모 유전이 발견되었을때, 빠른 시간내에 저렴한 초기투자비로 석유를 생산할 수 있도록 개발되었다. 이 시스템은 원유저장용 선박, tower, yoke, gravity base 및 원유처리장치들로 구성되어 있으며 각 구조믈들은 pin 또는 universal joint들로 연결되어있다. 본 구조물의 파도중에서의 동적거동은 전산 program을 이용하여 구하여 wave tank에서 수행된 실험의 결과와 비교, 검토하였다. 그리고 이들 결과를 이용하여 구조적 안전성을 검토하였으며, 설계, 해석 및 model test의 결과들은 선급협회의 승인을 받았다.

  • PDF