• 제목/요약/키워드: Universal adhesive

검색결과 237건 처리시간 0.021초

폴리카보네이트 브라켓 부착 시 결합강도 증진을 위한 표면처리 효과 (The Effect of Surface Treat`ment on Bond Strength of Polycarbonate Bracket)

  • 김석필;김년경;이현정;황현식
    • 대한치과교정학회지
    • /
    • 제36권5호
    • /
    • pp.331-338
    • /
    • 2006
  • 본 연구는 폴리카보네이트 브라켓 부착 시 표면처리가 결합강도를 증진시키는지 알아보고자 시행되었다. 소의 하악 중절치를 포매하여 만든 100개의 시편에 광중합형 레진 접착제를 이용하여 폴리카보네이트 브라켓(Alice, 광명 데이콤, 대한민국)을 부착하였다. 대조군의 경우, 표면처리 없이 부착한 반면, 실험군의 경우 샌드블라스팅 처리한 경우, plastic conditioner 처리하여 부착한 경우, 그리고 샌드블라스팅과 함께 plastic conditioner 처리한 경우로 구분하여 접착하였다. 만능시험기를 이용하여 전단결합강도를 측정하고 파절양상을 비교 분석한 결과, plastic conditioner나 샌드블라스팅으로 표면처리를 시행한 경우 표면처리를 시행하지 않은 경우에 비해 높은 결합강도를 보였다 (p < 0.001). 샌드블라스팅과 plastic conditioner를 모두 처리한 경우는 샌드블라스팅만이나 Plastic conditioner만 처리한 경우보다 높은 결합강도를 보였으며, 특히 샌드블라스팅만 처리한 경우에 비해서는 통계적 유의차를 보였다 (p < 0.05). 이상의 연구결과는 폴리카보네이트 브라켓 부착 시 결합강도 증진을 위해서 베이스의 표면처리가 필요하며 샌드블라스팅 후 plastic conditioner 도포가 가장 효과적임을 보여주었다.

복합레진 수복시 상아질 표면 처리가 미세 변연 누출에 미치는 영향에 관한 연구 (THE EFFECT OF MOISTENING OF ETCHED DENTIN AND ENAMEL SURFACE ON THE MICROLEAKAGE OF COMPOSITE RESINS)

  • 전철민;권혁춘;이정식;이명종;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제21권1호
    • /
    • pp.321-338
    • /
    • 1996
  • The purpose of this study was to evaluate the effect of moistening and air-drying of acid conditioned dentin and enamel on the marginal microleakage. In this study, Class V cavity were prepared on both buccal and lingual surface of sixty extracted human premolars with cementum margin. These specimens were randomly devided into three groups and three dentin adhesives(Scotchbond Multi-Purpose, All bond 2, Prisma Universal Bond 3) were applied to each group. The specimens in each group were subdevided into four groups (Wet/primed, Dry/primed, Wet/not primed, Dry/not primed) and the etched dentin and enamel surface were treated these four surface treatments prior to the placement of a bonding agent or adhesive. Wet/primed group was simply blot-dried with a damp facial tissue before primer placement ; Dry/primed group was air dried for 30 seconds before the placement of a primer ; Wet/not primed group and Dry/not primed group were not primed after blot dried and air dried for 30 seconds each group. The bonding agent and composite resin were applied for each group. All specimens were exposed to 500 cycle of thermal stress. Specimens were placed in a silver nitrate solution and then sectioned buccolingually through the center of the restoration. The dye penetrations of the specimens were observed with a stereo microscope. The statistical test were applied to the results using a one way analysis variance (ANOVA) and Duncan's multiple range test. The aspects of silver ion penetration into the resin/dentin interface were examined under scanning electron microscopy. The results were as follows. 1. In all groups, the enamel margin showed significantly lower leakage value than the cementum margin (p<0.05). 2. Regardless of various surface treatment and dentin adhesives, there was no significant difference at the enamel margins (p>0.05). 3. At the dentin margins, the leakage values of Dry/not primed group showed significantly higher than that of the other groups (p<0.05). The leakage values of Wet/primed group showed significantly lower than that of the other groups, but, there was no significant difference between Wet group and Dry group. 4. There was no significantly difference between the dentin adhesives regarding the surface treatments in all groups(p>0.05). 5. On the backscatterd scanning electron microscopy observation, the penetration of the silver ion occured at the bonding resin/dentin interface. In the Wet/primed group, resindentin hybrid zone and resin penetration into the dentin was observed. The resin tags were compactively formed to a thickness of $3\sim4{\mu}m$ at the upper part of dentinal tubules. In the Dry/primed group, the thickness of the hybrid zone and the diameter, depth of the resin tags diminished. In the Non-primed groups, the hybrid zone was not identified and few resin tag was observed. There was the gap formation in the resin/dentin interface.

  • PDF

One-bottle 상아질 접착제의 전단결합강도와 접착성에 관한 부식시간의 효과 (THE EFFECT OF ETCHING TIME ON SHEAR BOND STRENGTH AND ADAPTIBILITY OF ONE-BOTTLE DENTIN ADHESIVE)

  • 박광수;박일윤;조영곤
    • Restorative Dentistry and Endodontics
    • /
    • 제24권1호
    • /
    • pp.240-250
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of different etching time on the shear bond strength and adaptibility of composite to enamel and dentin when used one-bottle adhesive Prime & Bond$^{TM}$ 2.0. The proximal and occlusal surfaces of 88 extracted human molars were ground to expose enamel(n=44) and dentin (=44) using diamond wheel saw. Teeth were randomly assigned to four test groups(n=11) and received the following treatments : Control group were conditioned with 36% phosphoric acid for 20 sec. according to the manufacturer's directions. Experimental 10 sec. group, 30 sec. group and 60 sec. group were conditioned with 36% phosphoric acid for 10 sec., 30 sec. and 60 sec., respectively. Teeth were rinsed and dried for 2 sec. Prime & Bond$^{TM}$ 2.0 were applied according to the manufacturer's directions and Spectrum$^{TM}$ TPH composite resins were bonded to enamel and dentin surfaces. All specimens were stored in distilled water for 24 hours. Eighty specimens were sheared in a Universal Testing Machine with a crosshead speed of 5mm/minute. One way ANOVA and LSD test were used for statistical analysis of the data. Failure modes of all specimens after shear bond strength test were examined and listed. Also, representive postfracture modes and eight specimens were examined under scanning electron microscope. The results of this study were as follows: 1. The shear bond strength to enamel was the highest value in 30 sec. group (20.68${\pm}$8.54MPa) and the lowest value in 10 sec. group (14.92${\pm}$6.07MPa), so there was significant difference of shear bond strength between two groups (p<0.05). But there was no significant difference among other groups (p>0.05). With longer etching time to enamel from 10 sec. to 30 sec., higher the shear bond strength was obtained, but the shear bond strength was decreased at 60 sec. etching time. 2. The shear bond strength to dentin was the highest value in control group (13.08${\pm}$6.25MPa) and the lowest value in 60 sec. group (9.47${\pm}$3.35MPa), but there was no significant difference among the all groups (p>0.05). The eching time over 20 sec. decreased the shear bond strength to dentin. 3. In SEM observation, the enamel and resin interfaces were showed close adaptation with no relation to etching time of enamel. And the dentin and resin interfaces were showed close adaptation at 20 sec. and 30 sec. etching time, but showed some gaps at 10 sec. and 60 sec. etching time. Accordingly, these results indicated that a appropriate etching time in Prime & Bond$^{TM}$ 2.0 was required to be 30 sec. in enamel and 20 sec. in dentin for the high shear bond strength and good adaptation between the composite resin and tooth substance.

  • PDF

강화형 간접복합레진과 치과용 합금의 결합강도에 관한 연구 (A STUDY ON THE BOND STRENGTH OF REINFORCED INDIRECT COMPOSITE RESINS TO DENIAL ALLOYS)

  • 윤동주;신상완;임호남;서규원
    • 대한치과보철학회지
    • /
    • 제37권5호
    • /
    • pp.620-639
    • /
    • 1999
  • Indirect composite resins are used as an popular effective esthetic material in prosthetic dentistry, often with metallic substructure that provides support for restorations. Recently, new indirect composite resins as a substitute of ceramic have been developed. These resins provide good esthetics, with a wide range of hue and chroma. And the flexural strength of those is in the range of 120-150MPa, Which is higher than that of feldspathic Ceramic, and similar th that of Dicor. Although it has many merits, one of the major clinical problems of composite resins is the bond failure between metal and resin due to insufficient interfacial bond strength. The purpose of this study was to evaluate shear bond strength of the reinforced indirect composite resin to dental alloys. Three different composite resin systems($Artglass^{(R)},\;Sculpture^{(R)},\;Targis^{(R)}$) as test groups and ceramic($VMK\;68^{(R)}$) as control group were bonded to Ni-Cr-Be alloy($Rexillium\;III^{(R)}$) and gold alloy(Deva 4). All specimens were stored at $^37{\circ}C$ distilled water for 24 hours and the half of specimens were thermocycled 2000 times at temperature from $5^{\circ}C\;to\;60^{\circ}C$. The shear bond strengths of reinforced indirect composite resins to dental alloys were measured by using the universal testing machine, and modes of debonding were observed by stereoscope and scanning electron microscope. The results were as follows: 1 The shear bond strengths of reinforced indirect composite resins to dental alloys were approximately half those of ceramic to dental alloys(P<0.01). 2. There was no significant difference between the shear bond strength of several reinforced indirect composite resins to metal. 3. Alloy type did not affect on the shear bond strengths of resin to metal, but the shear bond strengths of ceramic to gold alloys were higher than those of ceramic to Ni-Cr alloys(P<0.05). 4. The shear bond strengths of Artglass and Targil to gold alloys were significantly decreased after thermocycling treatment(P<0.01). 5. Sculpture showed cohesive, adhesive, and mixed failure modes, but Artglass and Targis showed adhesive or mixed failures. And ceramic showed cohesive and mixed failures.

  • PDF

Effect of liners and primers on tensile bond strength between zirconia and resin-based luting agent

  • Jo, Eun-Hye;Huh, Yoon-Hyuk;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권5호
    • /
    • pp.374-380
    • /
    • 2018
  • PURPOSE. The effect of silica-based glass-ceramic liners on the tensile bond strength between zirconia and resin-based luting agent was evaluated and compared with the effect of 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-containing primers. MATERIALS AND METHODS. Titanium abutments and zirconia crowns (n = 60) were fabricated, and the adhesive surfaces of the specimens were treated by airborne-particle abrasion. The specimens were divided into 5 groups based on surface treatment: a control group, 2 primer groups (MP: Monobond Plus; ZP: Z Prime Plus), and 2 liner groups (PL: P-containing Liner; PFL: P-free Liner). All specimens were cemented with self-adhesive resin-based luting agent. After 24-hour water storage and thermocycling (5,000 cycles, $5^{\circ}C/55^{\circ}C$), the tensile bond strength was measured using a universal testing machine. Failure mode analysis and elemental analysis on the bonding interface were performed. The data were analyzed using Kruskal-Wallis test, Dunn's post hoc test, and Fisher's exact test. RESULTS. The liner groups and primer groups showed significantly higher tensile bond strengths than that of the control group (P<.05). PFL showed a significantly higher tensile bond strength than the primer groups (P<.05). The percentage of mixed failure was higher in the primer groups than in the control group (P<.001), and all the specimens showed mixed failure in the liner groups (P<.001). A chemical reaction area was observed at the bonding interface between zirconia and liner. CONCLUSION. The application of liner significantly increased the tensile bond strength between zirconia and resin-based luting agent. PFL was more effective than MDP-containing primers in improving the tensile bond strength with the resin-based luting agent.

상아질 표면상태에 따른 광중합형 글래스아이오노머 시멘트의 전단결합강도에 관한 연구 (A STUDY ON THE SHEAR BOND STRENGTH OF LIGHT CURED GLASS IONOMER CEMENTS TO CONTAMINATED DENTIN)

  • 김경화;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제22권2호
    • /
    • pp.609-621
    • /
    • 1997
  • The purpose of this study was to evaluate the shear bond strength of three light-cured glass ionomer cements to blood contaminated bovine dentin. The materials used in this study were Fuji II LC, Dyract and Variglass VLC. The dentin conditioners were 10% polyacrylic acid, 10% maleic acid and 10% phosphoric acid. 180 lower anterior bovine teeth were selected in this study. The teeth were embedded in acrylic resin and were grounded with 320 to 600 grit silicon carbide paper to create a flat dentin surface. The teeth were divided into SIX groups. The experimental procedures in six groups were as follows; Group l(GF) : Samples bonded to dentin surface with Fuji II LC after 10% polyacrylic acid treatment. Group 2(BGF) : Samples bonded to dentin surface with Fuji II LC after 10% polyacrylic acid treatment and blood contamination. Group 3(MD) : Samples bonded to dentin surface with Dyract after 10% maleic acid treatment. Group 4(BMD) : Samples bonded to dentin surface with Dyract after 10% maleic acid treatment and blood contamination. Group 5(PV) : Samples bonded to dentin surface with Variglass VLC after 10% phosphoric acid treatment. Group 6(BPV) : Samples bonded-to dentin surface with Variglass VLC after 10% phosphoric acid treatment and blood contamination. Group 1,3 and 5 were classified into the control groups, while group 2,4 and 6 were classified into the experimental groups. Each group contained 30 samples. After 24 hours water storage at $37^{\circ}C$, all smples were subjected to a shear load to fracture at a cross head speed of 1.0 mm/min with Instron universal testing machine(No. 4467). Debonded surfaces were observed under Scanning Electron Microscope(Hitachi S-2300) at 20kvp. The data were evaluated statistically at the 95% confidence level with Student's t-test. The following results obtained; 1. Shear bond strengths were higher in the control groups(1,3,5 group) than in the experimental groups(2,4,6 group). 2. The shear bond strength of group 5(PV) was the highest in the control groups, and the group 5 was significantly higher than the group l(GF) on the shear bond strength. 3. The group 4(BMD) was the highest on the shear bond strength, and the group 2(BGF) was the lowest in the experimental groups. The group 4(BMD) and 6(BPV) showed a significant difference with the group 2 on the shear bond strength. 4. All the groups showed an adhesive-cohesive failure. except the group 2(BGF) showing adhesive failure.

  • PDF

치과용 비귀금속 합금과 전장용 강화형 복합레진의 인장결합강도 (TENSILE BOND STRENGTH BETWEEN NON-PRECIOUS DENTAL ALLOY AND VENEERING REINFORCED COMPOSITE RESINS)

  • 양병덕;박주미;고석민;강건구
    • 대한치과보철학회지
    • /
    • 제38권4호
    • /
    • pp.427-437
    • /
    • 2000
  • Recently the 2nd generation laboratory composite resins were introduced. Although the mechanical properties of these composite resins have been improved, there were some disadvantages such as discoloration, low abrasion resistance and debonding between metal and resin. The purpose of this study was to evaluate the tensile bond strength between non-pecious dental alloy(verabond) and four veneering reinforced composite resins ; Targis(Ivoclar Co., U.S.A.), Artglass(Kulzer CO., Germany), Sculpture(Jeneric Pentron Co., U.S.A.), and Estonia(Kurary Co., Japan). All test metal specimens were polished with #1,000 SiC paper, and sandblasted with $250{\mu}m$ aluminum oxide. After then. according to manufacturer's instructions metal adhesive primer and veneering resins were applied. All test specimens were divided into two groups. One group was dried in a desiccator at $25^{\circ}C$ for 3 days, the other group was subjected to thermal cycling($2,000{\times}$) in water($5/55^{\circ}C$). Tensile bond strength was measured using Instron Universal Testing machine and the fractured surface was examined under the naked eyes and scanning electron microscope. Within the limitations imposed in this study, the following conclusions can be drawn: 1. In no-thermal cycling groups, there were no significant differences between Estenia and VMK68 but there were significant differences between Targis, Artglass, Sculpture and VMK68(p<0.05). 2. In no-thermal cycling resin groups, the highest tensile bond strength was observed in Estenia and there were significant differences between Estenia and the other resins(p<0.05). 3. Before and after thermal cycling, there were significant differences in tensile bond strength of Targis and Artglass(p<0.05). The tensile bond strength of Artglass was decreased and that of Targis was increased. 4. In no-thermal cycling groups, Artglass showed mixed fracture modes(95%), but after thermal cycling, Artglass showed adhesive fracture modes(75%).

  • PDF

레진시멘트의 중합방법이 포스트의 결합강도와 접착계면에 미치는 영향 (EFFECT OF CURING METHODS OF RESIN CEMENTS ON BOND STRENGTH AND ADHESIVE INTERFACE OF POST)

  • 김문홍;김혜정;조영곤
    • Restorative Dentistry and Endodontics
    • /
    • 제34권2호
    • /
    • pp.103-112
    • /
    • 2009
  • 본 연구에서는 2종의 이원중합 레진시멘트 (RelyX ARC와 Variolink II)를 이용하여 접착제와 레진시멘트의 중합방법 (자가중합과 광중합)이 섬유포스트와 근관 상아질의 결합강도와 접착계면에 미치는 영향을 상호 비교하기 위하여 시행하였다. 단근관을 갖는 발거된 32개의 하악 소구치에 근관을 충전한 후, FRC Postec system의 Reamer로 9 mm 깊이의 포스트 공간을 형성하였다. 레진시멘트의 종류와 중합방법에 따라 4개의 군 (R-SC군, R-LC군, V-SC군, V-LC군)으로 분류하였다. 포스트 공간에 각 군의 접착제를 도포한 후 레진시멘트를 주입하고, No. 3 FRC Postec 포스트를 위치시켜 자가중합 또는 광중합시켰다. 각 군의 치근을 실온의 증류수에 24시간동안 보관한 다음, 저속의 diamond wheel saw를 이용하여 치관부에서 치근단부를 향해 1.5 mm두께로 연속적으로 횡절단하여 1개의 치근에서 3개의 절편을 얻었다. 각 군의 절편 (31개)은 만능시험기에서 push-out 검사를 시행하였고, 각 군의 강도 값은 반복측정 two-way ANOVA와 one-way ANOVA를 이용하여 비교 분석하였다. 각 군의 절편 (3개)은 주사전자현미경하에서 섬유포스트, 레진시멘트 및 치근 상아질 간의 계면을 관찰, 비교하였다. 본 연구의 결과 전 부식 레진시멘트를 이용하여 섬유포스트를 포스트 공간에 합착할 경우, 접착제와 레진시멘트의 중합방법은 근관 상아질의 결합강도에 영향을 주었으며, 광중합보다 자가중합 방법 이 우수한 결합강도와 계면을 나타내었다.

표면 개질된 마이크로피브릴화 셀룰로오스를 이용한 폴리아마이드 섬유와의 복합페이퍼 제조 및 특성평가 (Synthesis and Characterization of Composite Paper Using Polyamide Fiber and Surface Modified Microfibrillated Cellulose)

  • 이종희;임정혁;김기영;김경민
    • 폴리머
    • /
    • 제38권1호
    • /
    • pp.74-79
    • /
    • 2014
  • 두 가지 서로 다른 실란 화합물인 3-aminopropyltriethoxysilane(APS)과 3-mercaptopropyltriethoxysilane(MRPS) 그리고 lauroyl chloride를 이용하여 마이크로피브릴화 셀룰로오스(MFC) 표면을 화학적으로 개질하였다. 화학적으로 표면 처리한 MFC의 구조 및 특성은 FTIR, EDX, TGA, 접촉각 등을 측정하여 분석하였다. 이렇게 유기 관능기로 치환된 MFC와 폴리아마이드(PA) 섬유를 사용하여 복합 페이퍼를 제조하였다. MFC의 표면 개질은 MFC 사이의 응집을 막아줄 뿐만 아니라 PA 섬유와의 접착성을 향상시켜 주는 역할을 한다. 단섬유인 PA 섬유를 연결시켜주는 바인더 역할을 하는 MFC 없이는 페이퍼를 제조할 수가 없었다. 즉, 표면 개질된 MFC는 PA 섬유 내에서 분산되어 PA 섬유들을 연결시켜 복합페이퍼의 제조를 가능하게 하였다. 두 가지 실란 화합물로 개질된 MFC를 이용한 복합페이퍼의 인장강도와 인장탄성률의 기계적 물성은 lauroyl 그룹으로 치환된 MFC를 이용한 복합페이퍼에 비하여 우수하였다. 화학적으로 표면 처리한 MFC와 PA 섬유로 제조된 복합페이퍼의 모폴로지와 기계적 물성은 SEM과 UTM을 통하여 분석하였다.

실란처리 되어진 실리카가 첨가된 에폭시 접착제의 접착박리강도에 관한 연구 (A Study on the Peel Strength of Silane-treated Silicas-filled Epoxy Adhesives)

  • 최보경;김홍건;서민강;박수진
    • 공업화학
    • /
    • 제25권5호
    • /
    • pp.520-525
    • /
    • 2014
  • 본 연구에서는 기존 에폭시수지에 에폭시 콩기름(Epoxidized soybean oil : ESBO)과 실란처리 되어진 실리카가 첨가된 에폭시 접착제의 접착특성에 대하여 고찰하였다. 실리카의 표면처리는 실란커플링제인 ${\gamma}$-methacryloxy propyl trimethoxy silane (MPS), ${\gamma}$-glycidoxy propyl trimethoxy silane (GPS), 그리고 ${\gamma}$-mercapto propyl trimethoxy silane (MCPS)을 사용하였다. 실리카 첨가 에폭시 접착제의 표면특성과 구조특성은 scanning electron microscope (SEM)과 Fourier transform infrared spectroscopy (FT-IR)을 이용하여 관찰하였으며 T-peel 시험법에 의한 접착특성은 universal testing machine (UTM)를 이용하여 분석하였다. 실란처리에 따른 실리카의 평형 확산압력, 표면자유에너지, 비표면적은 BET법을 이용한 $N_2$/77 K 기체 흡착을 통하여 관찰하였다. 결과로서, 에폭시 접착제의 접착박리강도는 미처리에 비해 접착제 내 실란처리된 실리카가 함유됨에 따라 증가하였다. 이러한 결과는 실란커플링제가 에폭시 접착제의 분산을 증가시키는 중요한 역할이라고 판단된다. 그리고 MCPS로 실란처리한 에폭시 접착제의 경우 GPS와 MPS에 비해 가장 우수한 접착력을 나타냄을 확인하였다.