• Title/Summary/Keyword: Unity machine learning agents toolkit

Search Result 2, Processing Time 0.018 seconds

Implementation of Target Object Tracking Method using Unity ML-Agent Toolkit (Unity ML-Agents Toolkit을 활용한 대상 객체 추적 머신러닝 구현)

  • Han, Seok Ho;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.110-113
    • /
    • 2022
  • Non-playable game character plays an important role in improving the concentration of the game and the interest of the user, and recently implementation of NPC with reinforcement learning has been in the spotlight. In this paper, we estimate an AI target tracking method via reinforcement learning, and implement an AI-based tracking agency of specific target object with avoiding traps through Unity ML-Agents Toolkit. The implementation is built in Unity game engine, and simulations are conducted through a number of experiments. The experimental results show that outstanding performance of the tracking target with avoiding traps is shown with good enough results.

Design and Implementation of Reinforcement Learning Environment Using Unity 3D-based ML-Agents Toolkit (Unity 3D 기반 ML-Agents Toolkit을 이용한 강화 학습 환경 설계 및 구현)

  • Choi, Ho-Bin;Kim, Chan-Myung;Kim, Ju-Bong;Han, Youn-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.548-551
    • /
    • 2019
  • 강화 학습은 일반적으로 제어 로봇과 관련이 있는 순차적 의사결정을 위한 학습의 한 형태이다. 이 강화 학습은 행동에 대한 보상을 최대로 하는 정책을 학습하는 것을 목표로 한다. 하지만, 강화 학습을 실제 세계에 적용하기에는 많은 제약사항이 존재하며 실제 세계의 복잡한 환경에서 좋은 정책을 학습하는 것은 매우 어렵다. Unity는 강화 학습 시뮬레이션을 위한 전용 Toolkit을 제공한다. 이러한 이유로 Unity를 시뮬레이터로서 사용하는 것이 좋은 정책을 학습하는 훈련의 근거가 된다. 따라서 본 논문에서는 강화 학습을 실제 세계에 바로 적용시키기 전에 Unity Machine Learning Agents Toolkit을 사용하여 실제 세계와 비슷한 환경을 만들고 강화 학습을 통해 에이전트를 미리 학습시켜보는 과정을 수행해봄으로써 시뮬레이터의 필요성을 부각시킨다.