• Title/Summary/Keyword: Unit watershed

Search Result 325, Processing Time 0.035 seconds

A Study on the Final Evaluation Criteria of Allocation Exceedance Regional in Total Maximum Daily Load (오염총량관리 할당부하량 초과지역의 최종 평가기준에 관한 연구)

  • Oh, Seung Young;Han, Mideok;Kim, Seok Gyu;Ahn, Ki Hong;Kim, Oksun;Kim, Yong Seok;Park, Ji Hyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.450-457
    • /
    • 2016
  • The Total Maximum Daily Load (TMDL) is a watershed management system that involves the establishment of the target water quality, the calculation of permission loading (allocation loading), and the control of total pollutants for each unit watershed. Allocation loading is assessed through the comprehensive implementation assessment of the previous year's plan. Assessment results are used for follow-up management measures such as the limit of development and updating of TMDL Management Implementation Plans for the next planning period. Although detailed assessment criteria are important, they are not currently available. Therefore, we suggested assessment criteria by comparing two methods('integration method' and 'separation method') using combination point and non-point discharge loading. We also examined the penalty criteria considering controllable load local government and updating methods of the TMDL Management Implementation Plan for the next planning period.

Prediction of the Pollutant Loading into Estuary Lake according to Non-cultivation and Cultivation conditions of Reclaimed Tidal Land (담수호 유입 오염부하량의 간척농지 영농 전.후 변화 예측)

  • Yoon, Kwang-Sik;Choi, Soo-Myung;Yang, Hong-Mo;Han, Kuk-Heon;Han, Kyung-Soo
    • Journal of Korean Society of Rural Planning
    • /
    • v.7 no.1 s.13
    • /
    • pp.27-36
    • /
    • 2001
  • Estimation of current and future loading from watershed is necessary for the sound management of water quality of an estuary lake. Pollution sources of point and non-point source pollution were surveyed and Identified for the Koheung watershed. Unit factor method was used to estimate potential pollutant load from the watershed of current conditions. Flow rate and water qualify of base flow and storm-runoff were monitored in the main streams of the watershed. Estimation of runoff pollutant loading from the watershed into the lake in current conditions was conducted by GWLF model after calibration using observed data. Prospective pollutant loading from the reclaimed paddy fields under cultivation conditions was estimated using the modified CREAMS model. As a result, changes of pollutant loading into estuary lake according to non-cultivation and cultivation conditions of reclaimed tidal land were estimated.

  • PDF

Estimation of Pollutant Loadings from Watershed into Lakes of Ganwol and Boonam (간월호 및 부남호의 유입 오염부하량 산정)

  • Lim, Kyeong-Ho;Lee, Young-Sin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.8 no.4
    • /
    • pp.33-40
    • /
    • 2006
  • The water of rivers and lakes in Korea is the main sources for drinking, industrial and agricultural purposes. However, various pollutants washed-off from watershed area make worse and worse the water quality. Particularly, the changes of land uses in watershed area is the main pollutant sources in many cases in Korea, it is usually called to nonpoint pollution sources. In this reason, the Ministry of Environment are programing the total maximum daily load for four major large rivers in order to improve the water quality by controlling the watershed area. Therefore, this research was performed to estimate the total pollutant input from watershed areas to lakes of Ganwol and Boonam located in Chungnamdo. The AGNPS water quality model and monitoring were used to estimate the pollutant loading rates with unit pollutant concentration of each land use. The main landuse of the research area are forest, wet and dry paddy field and small urban area. The research shows that the pollutant sources in Ganwol and Boonam lakes are from the various landuses. In this manuscripts, the results will provide important informations for mitigating the pollutants to the lakes.

  • PDF

Characterization of Stormwater Pollutants and Estimation of Unit Loads for Road and Parking Lot in Gyeongan Stream Watershed (경안천지역의 도로 및 주차장에 대한 강우유출수의 특성분석과 원단위 산정)

  • Go, Sung-Hun;Memon, Sheeraz Amed;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.689-696
    • /
    • 2009
  • Unit load approach has been used to estimate the non-point pollutant load in Total Water Pollution Load Management System (TWPLMS). In this study, locally applicable unit loads for road and parking lot were developed based on the measurements of 9 rainfall events from 2007 to 2008 in Yongin city of Gyeongan stream watershed. Observations showed that stormwater runoff began at low precipitation (>1 mm) and peak pollutant concentration occurred at the beginning of the runoff because of impervious nature of the sites. Averaged event mean concentrations (EMCs) of road (parking lot) were estimated as COD 105.36(62.69) mg/L, BOD 15.94(13.20) mg/L, TSS 183.45(66.52) mg/L, T-N 4.63(3.28) mg/L, T-P 0.45(0.39) mg/L. Higher EMCs at the road than parking lot may reflect heavier traffic. Unit loads Estimated from the EMCs and 10 year average rainfall data were COD $331.17kg/km^2{\cdot}day$, BOD $50.20kg/km^2{\cdot}day$, TSS $580.13kg/km^2{\cdot}day$, T-N $14.68kg/km^2{\cdot}day$, T-P $1.43kg/km^2{\cdot}day$ in the road and COD $186.59kg/km^2{\cdot}day$, BOD $39.22kg/km^2{\cdot}day$, TSS $199.15kg/km^2{\cdot}day$, T-N $9.70kg/km^2{\cdot}day$, T-P $1.16kg/km^2{\cdot}day$ in the parking lot. The estimated unit loads are not so comparable to the ones listed in TWPLMS technical guideline and published data that locally developed unit loads should be used to estimate non-point pollutant loads.

GIS-Based Design Flood Estimation of Ungauged Watershed (논문 - GIS기반의 미계측 유역 설계홍수량 산정)

  • Hong, Seong-Min;Jung, In-Kyun;Park, Jong-Yoon;Lee, Mi-Seon;Kim, Seong-Joon
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.87-100
    • /
    • 2011
  • This study is to delineate the watershed hydrological parameters such as area, slope, rain gauge weight, NRCS-CN and time of concentration (Tc) by using the Geographic Information Sytem (GIS) technique, and estimation of design flood for an ungauged watershed. Especially, we attempted to determine the Tc of ungauged watershed and develop simple program using the cell-based algorithm to calculates upstream or downstream flow time along a flow path for each cell. For a $19km^2$ watershed of tributary of Nakdong river (Seupmoon), the parameters including flow direction, flow accumulation, watershed boundary, stream network and Tc map were extracted from 30m Agreeburn DEM (Digital Elevation Model) and landcover map. And NRCS-CN was extracted from 30m landcover map and soil map. Design rainfall estimation for two rainfall gauge which are Sunsan and Jangcheon using FARD2006 that developed by National Institute for Disaster Prevention (NIDP). Using the parameters as input data of HEC-l model, the design flood was estimated by applying Clark unit hydrograph method. The results showed that the design flood of 50 year frequency of this study was $8m^3/sec$ less than that of the previous fundamental plan in 1994. The value difference came from the different application of watershed parameter, different rainfall distribution (Huff quartile vs. Mononobe) and critical durations. We could infer that the GIS-based parameter preparation is more reasonable than the previous hand-made extraction of watershed parameters.

  • PDF

A Study for the Selection Method of Control Area of Nonpoint Pollution Source (비점오염원 관리지역의 선정 기법에 관한 연구)

  • Park, Sanghyun;Jeong, Woohyeok;Yi, Sangjin;Lim, Bongsu
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.761-767
    • /
    • 2010
  • This study introduces a model of territorial analysis on Chungcheongnam-do Nonsan-chun valley area, which gives an example of a method of selecting the management area for non-point pollution source from land use to help eliminate its source. High discharge load per unit area signify high level of land ratio with high level of basic unit of development load (including factory sites, school sites, roadways), which mean that there are a significant level of urbanization. It is these areas with the examination of the water quality of the nearby river that should be considered as the management area for non-point pollution source. Thus, the management area for non-point pollution source should be sought in areas with high discharge load per unit area and high density of water pollution area. When level of drainage is high the pollution density level is relatively lower, and when the level of drainage is low the density level is relatively higher. The level of pollution from non-point pollution source is much lower with more water flowing through. The possible non-point pollution source areas that were selected with these standards were then examined with the distance from the river, the slope angle, land usage, elevation, BOD discharge density load, T-N discharge density load, T-P discharge density load, and were given a level one through five. Out of the possible areas Nonsan-si Yeonmu-eup Anshim-li was the densest area, and it was given level one. The level one area should be examined further with the field analysis to be selected as the actual management area for non-point pollution source.

Evaluation of Water Quality Goal and Load Allocation Achievement Ratio in Guem River Total Maximum Daily Loads for the 1st Phase (금강수계 1단계 수질오염총량관리제의 목표수질 및 할당부하량 달성도 평가)

  • Park, Jae Hong;Oh, Seung Young;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.859-865
    • /
    • 2012
  • It is necessary to evaluate performances hitherto carried out in the management of Total Maximum Daily Loads (TMDLs) and to set up direction so that this system can be improved continuously in the future. This study was investigated load allocation achievement ratio, water quality goal achievement ratio and interrelation between water quality goal and load allocation for the first period (2004~2010). Load allocation achievement and BOD water quality goal achievement ratio were 50% and 73% in Guem River Basin, respectively. The main reason for excess of load allocation and shortfall of water quality goal were unfulfilled reduction plan and pollution sources increment. Therefore, it is necessary to develop enhanced pollution sources prediction method and make a list realizable reduction plan. 63% of the unit watershed was not interrelation between water quality goal and load allocation. The reason why water quality goal and load allocation had not correlation were water quality of upper unit watershed, increment of inflow quantity, effluent water quality of wastewater treatment plant affected the unit watershed, increment of inner productivity by algae, water quality deterioration during the specific period, river management flow, etc.

Performance Appraisal of Total Maximum Daily Loads: Performance on Development/Reduction Plan and Water Quality Status of Unit Watershed (수질오염총량관리제의 성과평가: 개발/삭감계획의 이행실적 및 단위유역의 수질 현황)

  • Park, Jae Hong;Park, Jun Dae;Rhew, Doug Hee;Jung, Dong Il
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.481-493
    • /
    • 2009
  • This study was conducted to performance appraisal of Total Maximum Daily Loads (TMDLs), especially in terms of performance on development & reduction plan and water quality status of unit watershed. Because load allocations for pollution sources were predicted redundantly by uncertainty of prediction, TMDLs master plan has been frequently changed to acquire load allocation for local development. Therefore, It need to be developed more resonable prediction techniques of water pollution sources to preventing the frequent change. It is suggested that the reduction amount have to be distributed properly during the planning period. In other words, it has not to be concentrated on the specific year (especially final year of the planning period). The reason why, if the reduction amount concentrate on the final year of the planning period, allotment loading amount could not be achieved in some cases (e.g., insufficiency of budget, extension of construction duration). If the development plan was developed including uncertain developments, it is necessary to be developed reduction plan considered with them. However, some of the plans in the reduction plan could not be accomplished in some case. Because, it is not considered financial abilities of local governments. Consequently, development plan must be accomplished to avoid uncertain developments, and to consider financial assistance to support the implementation of effective plan. Water quality has been improved in many unit watersheds due to the TMDLs, especially in geum river and yeongsang/seomjin river.

Parameter Identification for Linear Runoff Model (선형유출모형(線型流出模型)의 매개변수추정(媒介變數推定))

  • Yoon, Tae Hoon;Chun, Si Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.79-86
    • /
    • 1986
  • The parameters of Nash's conceptual model of Instantaneous Unit Hydrograph, n and k, are estimated by the moment method from the rainfall and runoff data in 18 watersheds of drainage area ranging 53.7 to 1,361 sq. km. Then, these parameters are represented in terms of watershed characteristics by F-test and multiple correlation method. The unit hydrographs by this study are compared with the unitgraphs obtained from the recorded runoff data and agreements are good. The results imply that unit hydrographs in ungaged watersheds can be derived by watershed characteristics only through Nash's model.

  • PDF

Development of Flood Analysis Module for the Implementation of a Web-Based Flood Management System (웹기반 홍수관리시스템 구현을 위한 홍수분석모듈개발)

  • Jung, In Kyun;Park, Jong Yoon;Kim, Seong Joon;Jang, Cheol Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.103-111
    • /
    • 2014
  • This study was to develop the flood analysis module (FAM) for implementation of a web-based real-time agricultural flood management system. The FAM was developed to apply for an individual watershed, including agricultural reservoir. This module calculates the flood inflow hydrograph to the reservoir using effective rainfall by NRCS-CN method and unit hydrograph calculated by Clark, SCS, and Nakayasu synthetic unit hydrograph methods, and then perform the reservoir routing by modified Puls method. It was programmed to consider the automatic reservoir operation method (AutoROM) based on flood control water level of reservoir. For a $15.7km^2$ Gyeryong watershed including $472{\times}10^4m^3$ agricultural reservoir, rainfall loss, rainfall excess, peak inflow, total inflow, maximum discharge, and maximum water level for each duration time were compared between the FAM and HEC-HMS (applied SCS and Clark unit hydrograph methods). The FAM results showed entirely consistent for all components with simulated results by HEC-HMS. It means that the applied methods to the FAM were implemented properly.