• Title/Summary/Keyword: Unit water requirement

Search Result 36, Processing Time 0.023 seconds

A Study on the Estimation of Watter Loss Rates in Irrigation Canals (灌漑用水路의 水路損失率 算定에 關한 硏究)

  • Koo, Ja-Woong;Lee, Ki-Chun;Kim, Jae-Young;Lee, Jae-Young
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.2
    • /
    • pp.56-66
    • /
    • 1982
  • This study was carried out in order to estimate water losses in irrigation canals, which may be used to evaluate the water requirement for irrigation projects. The conveyance losses were measured by the inflow-outflow method, the seepage losses were measured by the ponding method, and the operation losses in the course of irrigation were calculated by comparing the two kinds of losses. The results obtained in this experiment were as follows; 1. Conveyance losses per unit area of wetted perimeter by the main irrigation canal, the secondary irrigation canal and the tributary irrigation canal, were 1.399${\times}10^{-5}m^3/sec/m^2$, 5.154${\times}10^{-5}m^3/sec/m^2$, and 2.67${\times}10^{-5}m^3/sec/m^2$ respectively in the Goong-sa area. And they were 1.934${\times}10^{-5}m^3/sec/m^2$, 2.149${\times}10^{-5}m^3/sec/m^2$, and 4.558${\times}10^{-5}m^3/sec/m^2$ respectively in the Seong-dug area. 2. Seepage losses per unit area of wetted perimeter by the secondary irrigation canal and the tributary irrigation canal, were 2.180${\times}10^{-6}m^3/sec/m^2$ and 2.168${\times}10^{-6}m^3/sec/m^2$ in the Goong-sa area, 1.150${\times}10^{-6}m^3/sec/m^2$ and 1.084${\times}10^{-6}m^3/sec/m^2$ in the Seong-dug area respectively. 3. Operation losses per unit area of wetted perimeter by the secondary irrigation canal and the tributary irrigation canal, were 4.936${\times}10^{-5}m^3/sec/m^2$ and 2.453${\times}10^{-5}m^3/sec/m^2$ in the Goong-sa area, 2.034${\times}10^{-5}m^3/sec/m^2$ and 4.450${\times}10^{-5}m^3/sec/m^2$ in the Seong-dug area respectively. 4. Conveyance, seepage and operation losses in the Goong-sa area were 6.7%, 94.6%, and 14.0% more than those in the Seong-dug area. Operation losses amount to about 17 times as much as seepage losses in the Goong-sa area and about 29 times in the Seong-dug area. 5. The seepage losses depend much on the soil texture, ranging from 7.437${\times}10^{-7}m^3/sec/m^2$ to 2.430${\times}10^{-6}m^3/sec/m^2$. 6. Water loss rates in the main irrigatin canal, the secondary irrigation canal and the tributary irrigation canal, were estimated as 8.49%, 37.27% and 9.81% respectively in the Goong-sa area. And they were estimated as 15.10%, 32.67% and 13.78% respectively in the Seong-dug area.

  • PDF

Foamed Concrete with a New Mixture Proportioning Method Comparable to the Quality of Conventional ALC Block (ALC 블록성능의 기포콘크리트 배합설계 연구)

  • Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The objective of this study is to develop a high-performance foamed concrete made with a new mixture proportioning as an alternative of autoclaved lightweight concrete (ALC) block. For the early-strength gain of the foamed concrete under an atmospheric curing condition, the binders and chemical agents were specially contrived as follows: 3% anhydrous gypsum was added to ordinary portland cement (OPC) in which $3CaO{\cdot}SiO_2$ content was controlled to be above 60%; and the content of polyethylene glycol alkylether in a polycarboxylate-based water-reducing agent was modified to be 28%. Using these binders and chemical agents, 11 mixes were prepared with the parameters of W/B ratio (30% to 20% in a interval of 2.5%) and unit binder content ($400kg/m^3$ to $650kg/m^3$ in a interval of $50kg/m^3$). The quality and availability of the mixed foamed concrete were examined according to the minimum requirements specified in the KS for ALC block and existed conventional foamed concrete. The measured properties satisfied the minimum requirement of KS for ALC block and proved that the developed high-performance foamed concrete had considerable potential for practical application.

Features and Socio-Economic Background of Farmland Consolidation Project during the 1930s and 1940s in Korea (1930~40년대 경지정리사업의 특징과 사회⋅경제적 배경)

  • Kim, Jin-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.85-96
    • /
    • 2022
  • The study is aimed to investigate the features and socio-economic background of farmland consolidation project with medium-sized paddy plot at irrigation associations during the Japanese colonial period in Korea. Most of farmland consolidation works in the 1940s was composed of independent irrigation and drainage ditches along the short side of field plot. However, the number of farm roads at farmland consolidation zone was much smaller than number of irrigation ditches to decrease reduction in farmland area. The standard field plot was medium-sized (about 20-40 ares) in Korea but small-sized (about 10 ares) in Japan in this period. As the result of farmland consolidation works, the unit water requirement was increased to 0.0035 m3/s/ha, and the unit area drainage discharge was over 2.0 m3/s/km2 in many cases. The farmland consolidation with medium-sized plot have been spread under the colonial landlord system, where major landlords occupied a large share of farmland and managed corporate farming to gain more benefit. The reasons for spread of farmland consolidation with medium-sized plot may be as follows: high net profit ratio, an increase in land price, and labor savings in rice farming. The farmland consolidation with medium-sized plot in the colonial period showed intermediate features between the farm consolidation with small-sized plot for an increase in land productivity in Japan and the farm consolidation with medium-sized plot for an increase in labor productivity after the 1960s.

Compressive Strength Characteristics of Light-weight Air Foamed Soil Using Dredged Silty Soils (준설 실트질 점토를 이용한 경량기포혼합토의 압축강도 특성)

  • Kim, Donggyu;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.27-33
    • /
    • 2017
  • In this research, laboratory tests were carried out to investigate the engineering properties of Light-Weight Air Foamed Soil (LWAS) based on silty clays with the animal foaming agent and cement. LWAS has been used as an embankment material over soft ground for road and side extension of the existing road. In field, unit weight and flow value is measured right after producing in mixing plant in order to control the quality of LWAS, and laboratory tests are carried out to confirm the quality through compressive strength of LWAS as well. In this research, direct estimation of the specification requirement of strength using flow values in field is the main purpose of the study together with other characteristics. From the test results, it can be seen that flow values increase with the initial water content and unit weight increases with the depth due to material segregation. Compared to the upper specimen, lower end of 60 cm specimen shows about 2 times higher compressive strength. Relationship between flow values and normalized factor presented by Yoon & Kim (2004) was presented. With that relationship, compressive strength can be predicted from flow values in field. From the relationship, the normalized factor was calculated. Thereafter calculated compressive strengths according to the flow values were compared to measured strengths in the laboratory. The higher the initial water content of the dredged soil has, the better relationship between predicted and measured shows. Therefore it is necessary to predict the compressive strength in advance through the relationship between the flow value and the normalized factor to reflect it in the design stage.

Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant (KIER의 열분해유화 공정 기술과 실증플랜트 소개)

  • Shin, Dae-Hyun;Jeon, Sang-Gu;Kim, Kwang-Ho;Lee, Kyong-Hwan;Roh, Nam-Sun;Lee, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

Land Use and Land Cover Mapping from Kompsat-5 X-band Co-polarized Data Using Conditional Generative Adversarial Network

  • Jang, Jae-Cheol;Park, Kyung-Ae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.111-126
    • /
    • 2022
  • Land use and land cover (LULC) mapping is an important factor in geospatial analysis. Although highly precise ground-based LULC monitoring is possible, it is time consuming and costly. Conversely, because the synthetic aperture radar (SAR) sensor is an all-weather sensor with high resolution, it could replace field-based LULC monitoring systems with low cost and less time requirement. Thus, LULC is one of the major areas in SAR applications. We developed a LULC model using only KOMPSAT-5 single co-polarized data and digital elevation model (DEM) data. Twelve HH-polarized images and 18 VV-polarized images were collected, and two HH-polarized images and four VV-polarized images were selected for the model testing. To train the LULC model, we applied the conditional generative adversarial network (cGAN) method. We used U-Net combined with the residual unit (ResUNet) model to generate the cGAN method. When analyzing the training history at 1732 epochs, the ResUNet model showed a maximum overall accuracy (OA) of 93.89 and a Kappa coefficient of 0.91. The model exhibited high performance in the test datasets with an OA greater than 90. The model accurately distinguished water body areas and showed lower accuracy in wetlands than in the other LULC types. The effect of the DEM on the accuracy of LULC was analyzed. When assessing the accuracy with respect to the incidence angle, owing to the radar shadow caused by the side-looking system of the SAR sensor, the OA tended to decrease as the incidence angle increased. This study is the first to use only KOMPSAT-5 single co-polarized data and deep learning methods to demonstrate the possibility of high-performance LULC monitoring. This study contributes to Earth surface monitoring and the development of deep learning approaches using the KOMPSAT-5 data.

Building a Data Model of the River Thematic Maps (하천주제도 데이터모델 설계에 관한 연구)

  • Kim, Han-Guck;Song, Yonh-Cheol;Kim, Kye-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.4 s.27
    • /
    • pp.35-43
    • /
    • 2003
  • Currently, the government has been driving numerous projects to build the e-government which can enable limitless access and utilization of the information through the accomplishment of the real time based various administrative services. In water resource field, a project to generate digital river thematic maps has been undergoing as a part of the computerization projects. As a partial results, the RIMGIS project has been completed and generation of the various river thematic maps has been required to fully utilize the DB built from RIMGIS project. For the effective generation of the thematic maps, a data model needs to be developed. A data model has been developed in this study to provide more efficient method to generate the thematic maps utilizing existing DB. The data model proposed from this study has defined the relationships between core feature data and framework Data along with relationships among data elements to represent the rivers in the real world more accurately. The core feature data and framework layers have been defined based on the survey of the domestic and foreign case studies along with requirement analysis of the users in the water resource field. The proposed core feature data has been defined based on the minimum unit of 'class', and the relationship between classes has been established based on the ArcGIS Hydro Data Model for the integrated processing of the river information. The proposed spatial data model can be judged to contribute establishing more efficient generation methodology of the river thematic maps.

  • PDF

Determination of Sulfur Requirement to Adjust pH of Alkaline Soil by Buffer Curve Method (알칼리성 토양 pH 교정시 완충곡선법을 이용한 황 시용량 결정)

  • Lee, In-Bog;Lim, Jae-Hyun;Yiem, Myoung-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.405-415
    • /
    • 2000
  • To determine application rate of elemental sulfur to adjust pH of alkaline soil, buffer curve method was investigated. The elemental sulfur required to control pH 8.3 to pH 6.3 by buffer curve calculation was treated in two soils of silty loam and sandy loam, and the sulfur-mixed soils were moistened with 50% of water holding capacity during incubation of 6 weeks at $30^{\circ}C$. Soil pH was lowered with incubation and reached to target point after 4 weeks of incubation, and elemental sulfur was oxidised entirely to sulfate. This means that buffer curve has the accuracy to determine sulfur application rate in alkaline soil. However it is estimated that application rate of sulfur should be carefully determined in the field scale. Excess application of elemental sulfur resulted in extremely low soil pH and caused the hinderance of lettuce growth by nutritional imbalance and ion toxicity. To simplify the determination procedure of sulfur requirement, buffer curve method by addition of 0.1N-HCl solution as unit of mL was developed, it was compared with theroutine methods which diluted $H_2SO_4$ solution and $Ca(OH)_2$ are added as cmolc per kg soil to adjust each pH step. Buffer capacities, cmolc kg $soil^{-1}$ $pH^{-1}$, calculated from two buffer curves were not significantly different. The result indicates that buffer curve method by 0.1N-HCl can be used to adjust high pH of alkaline soil.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Isolation of Bacillus subtilis GS-2 Producing γ-PGA from Ghungkukjang Bean Paste and Identification of γ-PGA (청국장으로부터 분리한 Poly(γ-glutamic acid)를 생산하는 균주 Bacillus subtilis GS-2의 분리 및 γ-PGA의 확인)

  • Bang, Byung-Ho;Jeong, Eun-Ja;Rhee, Moon-Soo;Kim, Yong-Min;Yi, Dong-Heui
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • ${\gamma}$-PGA(poly-${\gamma}$-glutamic acid) is an unusual anionic polypeptide that is made of D- and L-glutamic acid units connected by amide linkages between ${\alpha}$-amino and ${\gamma}$-carboxylic acid groups. ${\gamma}$-PGA has been isolated from many kinds of organisms. Many Bacillus strains produce ${\gamma}$-PGA as a capsular material of an extracellular viscous material. It is safe for eating as a viscosity element of fermented soybean products such as Chungkookjang and Natto. It is biodegradable, edible and nontoxic toward humans and the environment and its molecular weight varies from ten thousand to several hundred thousand depending on the kinds of strains used. Therefore, potential applications of ${\gamma}$-PGA and its derivatives have been of interest in the past few years in a broad range of industrial fields such as food, cosmetics, medicine, water-treatment, etc. In this study, a bacterium, Bacillus subtilis GS-2 isolated from the Korean traditional seasoning food, Chungkookjang could produce a large amount of ${\gamma}$-PGA with high productivity and had a simple nutrient requirement. Based on carbon utilization pattern and partial 16S rRNA sequence analysis, the GS-2 strain was identified as B. subtilis. The determination of purified ${\gamma}$-PGA was confirmed with thin layer chromatography (TLC), high performance liquid chromatography (HPLC), fourier transform infrared (FT-IR) spectra, and $^1H$-nuclear magnetic resonance ($^1H$-NMR) spectroscopy.