• Title/Summary/Keyword: Unit water requirement

Search Result 36, Processing Time 0.024 seconds

Transition of Pumping Technology, Irrigation Water Requirement, and Unit Area Drainage Discharge at Pumping Station-based Irrigation Associations in South Korea during Japanese Colonial Period (in Review) (일제하 양배수장형 수리조합에서의 양수기술과 단위용·배수량의 변천 (리뷰 논문))

  • Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.59-73
    • /
    • 2021
  • The purpose of this study is to investigate transition of pumping technology, irrigation water requirement, and unit area drainage discharge at the Pumping station-based Irrigation Associations (PIAs) in South Korea during Japanese colonial period (1910-1945). The PIAs established pumping stations and embankments along rivers for the purpose of irrigation, drainage and flood prevention until the mid-1920s. From the late 1920s after major river improvement projects, newly established PIAs did not include the flood prevention in their purpose of establishment. The design criteria of the irrigation and drainage projects, such as irrigation water requirements, design rainfall, and allowable ponding duration were decided according to the circumstances of PIAs. The gross irrigation water requirement of paddy fields increased from the 1920s to the 1940s, and reached the level of 0.0020 m3/s/ha (19 mm/d) in the 1940s for the fairly good irrigation status in the drought. The great floods of 1930, 1933, and 1934 triggered the increase in drainage discharge in the late 1930s, leading to the unit area drainage discharge of 0.9-2.6 m3/s/km2 for natural drainage and 0.3-1.1 m3/s/km2 for pump drainage. Therefore, several PIAs near the major rivers could avoid repetitive floods damage.

A Study on the Water Resources Assessment for Irrigation Scheme in Malawi

  • AHN, SungSick;Kim, Jin-Hong
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.178-186
    • /
    • 2018
  • Generally, in terms of the development of irrigation scheme, the efficient water resource management that supplies the irrigation water in consideration of the required time and accurate quantity to grow the crop should be conducted. The water resource assessment should precede to supply the irrigation water efficiently. The water resources assessment is divided into the water requirement analysis and the water availability assessment. In case of Korea, the major crop is paddy rice unlike crops of Africa, such as sugarcane, maize, and cassava, etc. Because it is not familiar with the method for upland irrigation development in tropical area, it needs to know the water resources assessment for irrigation scheme development about these crops. The Natama Scheme in Chiradzulu District of the Southern Malawi was selected as study area, which has tropical climate. From the collected meteorological data, the evapotranspiration was analyzed by Penman-Monteith Method and the effective rainfall was analyzed by USDA Soil Conservation Service Method. This study displays the results that for study area, the evapotranspiration varies from 2.80 mm/day to 5.51 mm/day and the effective rainfall varied from 2.1mm to 149.0mm. According to the selected crop (Green Maize, Dry Maize), the unit water requirement (UWR) and water demand (WD) considering the irrigation efficiency, irrigation time and irrigation area were estimated to be $0.00122m^3/s/ha$ and $0.0122m^3/s$ respectively. For the water availability assessment, the runoff of Natama scheme was calculated by specific yield method. The water availability was evaluated through reviewed differences of discharge between $Q80_{intake}$ and Total WD, and the irrigation water can be supplied sufficiently in the existing 10ha of Natama scheme. As a result of reviewing the extensibility of irrigable area, total WD of scheme is $0.02313m^3/s$, and $Q80_{intake}$ is $0.02387m^3/s$ ($Q80_{intake}$ > Total WD). Therefore, Natama scheme can be extended from 10 ha to 17 ha in the dry season in consideration of the $Q80_{intake}$.

The Impacts of Climate Change on Paddy Water Demand and Unit Duty of Water using High-Resolution Climate Scenarios (고해상도 기후시나리오를 이용한 논용수 수요량 및 단위용수량의 기후변화 영향 분석)

  • Yoo, Seung-Hwan;Choi, Jin-Yong;Lee, Sang-Hyun;Oh, Yun-Gyeong;Park, Na-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.15-26
    • /
    • 2012
  • For stable and sustainable crop production, understanding the effects of climate changes on agricultural water resources is necessary to minimize the negative effects which might occur due to shifting weather conditions. Although various studies have been carried out in Korea concerning changes in evapotranspiration and irrigation water requirement, the findings are still difficult to utilize fordesigning the demand and unit duty of water, which are the design criteria of irrigation systems. In this study, the impact analysis of climate changes on the paddy water demand and unit duty of water was analyzed based on the high resolution climate change scenarios (specifically under the A1B scenario) provided by the Korea Meteorological Administration. The result of the study indicated that average changes in the paddy water demand in eight irrigation districts were estimated as -2.4 % (2025s), -0.2 % (2055s), and 3.2 % (2085s). The unit duty of water was estimated to increase on an average within 2 % during paddy transplanting season and within 5 % during growing season after transplanting. This result could be utilized for irrigation system design, agricultural water resource development, and rice paddy cultivation policy-making in South Korea.

On the determination of the maximum water requirement Stage and the net unit duty of water in the rice fields (논벼의 최대용수시기와 순단위용수량의 결정에 대하여)

  • 김철기;김재휘
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.4
    • /
    • pp.37-51
    • /
    • 1984
  • The purpose of this study is to find out the determination method of designed duty of water in the rice fields through the comparison of the net unit duty of water at the late reduction division to heading stage with that at the planting stage. The data used for analysing this problem are the data of precipitation and gauge evaporation observed by Cheong-ju Meterological Center, the coefficient of evapotranspiration by College of Agriculture, Chung Buk University and the data of transplanting progressing in Boun area. The results obtained from this analysis are summarized as follows. 1.The occurring year of 1/10 probability value for available precipitation, gauge evaporation and mean maximum daily evapotranspiration during growing season is the year of 1977. 2.The 1/10 probability values of mean maximum evapotranspiration per day under the production rate of 1, 400kg/l0a and 1, 500kg/10a based on the weight of dry matters are 9. 2mm/day and 9. 6mm/day, respectively. 3.The net unit duty of water required in the fields that the maximum planting rate exists is more than the one in the fields that the planting rate is uniform in the planting stage. 4.The determination of net unit duty of water in the late reduction division to heading stage or the planting stage depends upon the daily evapotranspiration and percolation rate in the late reduction division to heading stage or the water depth required for planting and daily consumptive use of water after planting at the planting stage. Therefore the use of figure 5-(1) to figure 5-(6) can easily make the determination of the designed net unit duty of water out of above two kinds of net unit duty of water.

  • PDF

An Experimental Study on the Mixing and Mechanical Properties of Artificial Lightweight Aggregate(ALA) Concrete (인공경량골재 콘크리트의 배합과 역학적 성상에 관한 실험적 연구)

  • 김화중;김태섭;전명훈;안상건
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.99-104
    • /
    • 1991
  • It is necessary to generalize the use for structural ALA Concrete in our country, as increasing in the need for the development of ALA and the use of ALA Concrete which is related with the diminution of the self load and foundation section of structure responding to the realistic requirement against the decrease of natural aggregate and the high-rising and large-sizing of structures. This little study, therefore intended to help in the mixing design of concrete by considering the fundamental properties of ALA Concrete used with expanded clay, which is considered by acopting the experimental factors such as unit cement content, water cement ratio and the rate of fine aggregate. By considering the results of this experiment, it has difficulty in getting expected slump with the unit water content of normal concrete because of the large absorption of lightweight aggregate, and because the weight of unit volume and specific gravity ALA Concrete are small it appears that the strength and Elastic Modulus of that are small too and that it is more ductile than normal concrete.

  • PDF

The C Language Auto-generation of Reactor Trip Logic Caused by Steam Generator Water Level Using CASE Tools

  • Kim, Jang-Yeol;Lee, Jang-Soo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.58-67
    • /
    • 1999
  • The purpose is to produce a model of nuclear reactor trip logic caused by the steam generator water level of Wolsong 2/3/4 unit through an activity chart and a statechart and to produce C language automatically using Statechart-based Formalism and Stalemate MAGNUM toolset suggested by David Harel Formalism. It was worth attempting auto-generation of C language though we manually made Software Requirement Specification(SRS) for safety-critical software using statechart-based formalism. Most of the phases of the software life-cycle except the software requirement specification of an analysis phase were generated automatically by Computer Aided Software Engineering (CASE) tools. It was verified that automatically produced C language has high productivity, portability, and quality through the simulation.

  • PDF

Unit Loads of Pollutants in a Paddy Fields Area with Large-Scaled Plots during Irrigation Seasons (관개기 대구획 광역논에서의 오염부하 원단위)

  • 오승영;김진수;김규성;김선종;윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.136-147
    • /
    • 2002
  • Characteristics of unit loads of pollutants were investigated at a paddy fields area(Soro-ri) with large-scaled plots on loam soil during irrigation seasons of 1999 ∼2000. The average irrigation requirement of experimental paddy area are estimated at over 3,000 mm. The unit loads of pollutants in paddy fields area are determined by subtracting irrigation water load from outflow load (percolated and surface outflow loads). Surface outflow load in rainy days was calculated using the relationships of discharge and load, which are grouped into fertilizing and non-fertilizing periods. The ratios of the surface outflow load in rainy days to the total surface outflow load are 16.4% for T-N, 26.8% for T-P, and 23.3% far CODc,. The unit loads of pollutants show month-to-month and year-to-year variations, and monthly unit load of pollutants can show negative values, indicating that the paddy area acts as the pollutants sink. The average unit loads of the pollutants during irrigation seasons were estimated at 18.2 kg/ha fur T-N, 0.31 kg/ha for T-P, and 43.3 kg/ha for CODc,, which are smaller than the reported values for Kosei area in Japan.

Studies on the Rural Environmental Preservations (농촌의 환경보존에 관한 조사분석)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.4
    • /
    • pp.41-45
    • /
    • 1981
  • This study is to be surveyed the rural environmental conditions such as housing, water works, sewerage, road and farm road, land utilization, natural conservation and sightseeing, public damage and disaster, and rural water requirement through the 50 villages (10995 home unit) The brief results summarized in this study are as follows. 1.Modernization of rural housing, toilet room and arrangement of dust materials are getting better than before l0yrs. 2.Water works are highly improved but sewerage problem is still in the serious problems. 3.Rood achievement is quite good but farm road is in still insufficiency 4.Utilization of land resources should be maximaized but land conservation is still insufficient condition and farm land is getting polluted. 5.Natural environmental conservation is much more improved but landscape is still insufficient. 6.Public damages such as water pollution, air pollution, and others are getting greater and greater but meteorological damage should be decreased. 7.Watershed condition is getting better and better but because of the large requiriment of the water use for the crops, agricultural water use should be needed much more than before l0yrs.

  • PDF

A study on stormwater fee imposition for sustainable rainwater management (지속가능한 빗물관리를 위한 강우유출수 부담금 도입방안 검토)

  • Kim, Gil-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.103-110
    • /
    • 2019
  • Management of stormwater runoff is considered a nationwide challenge. To deal with this challenge, many researches have been conducted to study initial stage of stormwater fee imposition. The objective of this study was to recommend a framework for stormwater fee imposition not only for funding the stormwater management programs but also for encouraging people to decrease impervious area. This study focused on, regulations, financial resources and international cases related to stormwater runoff management. Polluter pays principle, which is generally recognized environmental policy principle is regarded the basis of stormwater fee imposition. Three components suggested for the stormwater rate structure are 1) stormwater utility revenue requirement, 2) billable equivalent stormwater unit, 3) system unit cost. The key point of stormwater rate structure is the "Equivalent Residential Unit(ERU)". The concept of an ERU is one residential area with a runoff coefficient. The runoff coefficient is that portion of rainfall that becomes runoff rather than infiltrating into the ground. In addition to this, this study took into account the observed data simulation for the separation of stormwater treatment expenditure from the comprehensive wastewater treatment cost.