• Title/Summary/Keyword: Unit pollutant load

Search Result 86, Processing Time 0.026 seconds

EMC and Unit Loads of Pollutants Generated from Tomato Cultivation during Rainfall (강우시 시설재배지역의 오염물질 유출 EMC 및 원단위 산정)

  • Jeon, Je Chan;Kwon, Koo Ho;Lee, Sang Hyeub;Lee, Jea Woon;Gwon, Heun Gag;Min, Kyung Sok
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.555-566
    • /
    • 2013
  • Total maximum daily load enforced in 2004 is a program to evaluate the amount of pollutants by each land use type and manage to meet a target water quality of each waterbody. The many research to calculate runoff load of pollutants by landuse type have been studied. This study was conducted to calculate pollutants EMC, load and unit load in stormwater runoff generated from tomato growing area. Monitoring was conducted about 32 event during 4years and water quality parameters such as BOD, $COD_{Mn}$, TOC, TSS, TN, TP, $NH_3-N$, $NO_3-N$, $PO_4-P$ were analyzed at the laboratory. The average EMC were measured as follows: 9.6 BOD mg/L, 17.2 $COD_{Mn}$ mg/L, 5.5 TOC mg/L, 319.4 TSS mg/L, 4.4 T-N mg/L, 2.6 T-P mg/L, 0.5 $NH_3-N$ mg/L, 0.04 $NO_2-N$ mg/L, 2.6 $NO_3-N$ mg/L, 0.8 $PO_4-P$ mg/L. TN and TP is dichargeed as $NO_3-N$ and particle phosphorus type, respectively.

Loading Characteristics of Non-Point Source Pollutants by Rainfall - Case Study with Sweet Potato Plot - (강우시 비점오염원의 오염부하 특성 - 고구마 재배지를 대상으로 -)

  • Kang, Mee-A;Jo, Soo-Hyun;Choi, Byoung-Woo;Yoon, Young-Sam;Lee, Jae-Kwan
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.365-371
    • /
    • 2009
  • This paper address the characteristics of loading pollutants caused by the unit agricultural area to establish an efficient management method in NPS (non-point source). The relationship between rainfall and runoff shows good coefficient with 0.92, when the event which shows relatively long antecedent dry days is excepted. The impact of runoff volume on the runoff coefficient can be described by the rainfall intensity strongly. The pollutant EMCs (event mean concentrations) in runoff increased by the increase of antecedent dry days due to dry soil conditions. As the similar pattern of pollutant's loads such as TSS, BOD, COD, TN and TP, it is cleared that other pollutants can be removed when TSS is removed. Therefore the system using only runoff coefficients is not sufficient for the prediction of pollutant loads. It is necessary to consider soil conditions such as rainfall, antecedent dry day, antecedent rainfall etc. for the prediction system.

The Runoff Characteristics of Non-point Pollution Sources in Industrial Complex(I): Focusing on the analysis of runoff water according to the initial rainfall of the C Industrial Complex (산업단지 비점오염원의 유출특성(I): C산업단지의 초기강우에 따른 유출수 분석을 중심으로)

  • Woo, Jae-Suk;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • In this study, rainfall water outlet water quality monitoring was performed on the C industrial complex to evaluate the characteristics of non-point pollutant runoff from the industrial complex during rainfall and to use it as basic data for calculating the load and unit of non-point pollutant. As a result of the IETD analysis, it was selected as a representative rainfall event for simulating non-point pollutants when the rainfall duration was about 21 hours and the rainfall was 26.44mm. Also as a result of monitoring the flow and water quality survey, the first rainfall was 12.2 mm, the rainfall duration was 12 hr, the number of preceding dry days was 3 days, the second rainfall was 22.1 mm, the rainfall duration was 12 hr, and the number of preceding dry days was 7 days.

Applicability Analysis of the HSPF Model for the Management of Total Pollution Load Control at Tributaries (지류총량관리를 위한 HSPF 모형의 적용성 분석)

  • Song, Chul Min;Kim, Jung Soo;Lee, Min Sung;Kim, Seo Jun;Shin, Hyung Seob
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The total maximum daily load (TMDL) implemented in Korea mainly manages the mainstream considering a single common pollutant and river discharge, and the river system is divided into unit watersheds. Changes in the water quality of managed rivers owing to the water quality management in tributaries and unit watersheds are not considered when implementing the TMDL. In addition, it is difficult to consider the difference in the load of pollutants generated in the tributary depending on the conditions of the water quality change in each unit watershed, even if the target water quality was maintained in the managed water system. Therefore, it is necessary to introduce the total maximum load management at tributaries to manage the pollution load of tributaries with a high degree of pollution. In this study, the HSPF model, a watershed runoff model, was applied to the target areas consisting of 53 sub-watersheds to analyze the effect of water quality changes the in tributaries on the mainstream. Sub-watersheds were selected from the three major areas of the Paldang water system, including the drainage basins of the downstream of the South Han-River, Gyeongan stream, and North Han-River. As a result, BOD ranged from 0.17 mg/L to 4.30 mg/L, and was generally high in tributaries and decreased in the downstream watershed. TP ranged from 0.02 mg/L - 0.22 mg/L, and the watersheds that had a large impact on urbanization and livestock industry were high, and the North Han-River basin was generally low. In addition, a pollution source reduction scenario was selected to analyze the change in water quality by the amount of pollution load discharged at each unit watershed. The reduction rate of BOD and TP according to the scenario changes was simulated higher in the watershed of the downstream of the North Han-River and downstream and midstream of the Gyeongan stream. It was found that the benefits of water quality reduction from each sub-watershed efforts to improve water quality are greatest in the middle and downstream of each main stream, and it is judged that it can be served as basic data for the management of total tributaries.

Selection of Best Management Practices for Urban Watershed Corresponding to the Runoff Characteristics from Non-point Pollution Sources (도시지역의 비점오염유출특성을 고려한 도시하천 적정관리방안)

  • Chi, Hong-Jin;Shin, Gwy-Am
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.31-40
    • /
    • 2016
  • The purpose of this study was to analyse the runoff characteristics of non-point pollution sources in an urban watershed and determine the effectiveness of newly installed riverwater treatment system to reduce water pollution caused by storm runoff in the urban watershed. The results of this study showed that the levels of BOD5 and suspended solid were highly influenced by first-flush effect and the pollutant load of those two parameters were also very high in the urban watershed. Meanwhile, the effectiveness of riverwater treatment system to reduce the levels of BOD5 and suspended solid was relatively high, but those to reduce the levels of T-N and T-P was low, which needs some additional unit treatment process such as filtration and coagulation. Nonetheless, the riverwater treatment system tested was relatively simple in installation and operation, effective in removing many water pollutants and, most importantly, does not require much space as other treatment systems, so it could be an attractive alternative option to reduce riverwater pollution caused by storm runoff in urban watersheds.

Runoff Characteristics of Non-point Source Pollutant Loads Generated on Golf Course (골프장에서 발생하는 비점오염원 유출특성)

  • Shin, Minhwan;Choi, Jaewan;Choi, Younghun;Park, Woonji;Won, Chulhee;Shin, Dongsuk;Lim, Kyoung Jae;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.784-793
    • /
    • 2011
  • Activities on golf courses are believed to contribute to the degradation of water quality in receiving waters due to the excessive use of farm chemicals including fertilizers and pesticides. The objective of this study was to collect basic data that could explain the characteristics of non-point source (NPS) pollution discharged from a golf course. Twenty seven water quality monitoring was conducted at a golf course during the rainy season of 2008 and 2009. The results indicated that the ranges of the Event Mean Concentration (EMC) at the golf course were $BOD_5$ 1.8~11.3 (ave. 5.6) mg/L, $COD_{Mn}$ 19.2~51.4 (ave. 39.6) mg/L, TOC 11.0~31.0 (ave. 16.8) mg/L, TN 1.545~16.098 (ave. 5.623) mg/L, TP 0.230~4.528 (ave. 1.525) mg/L, and SS 2.2~57.3 (ave. 10.1) mg/L. The unit loads of the golf course estimated were $BOD_5$ $3.35kg/km^2/day$, SS $6.43kg/km^2/day$, $COD_{Mn}$ $30.00kg/km^2/day$, TN $4.04kg/km^2/day$, TP $1.14kg/km^2/day$, and TOC $12.16kg/km^2/day$. Golf courses are currently classified as a grass field in which the unit loads are different from golf courses. Therefore, it was recommended that golf courses need to be separated from the grass field when the surveys and modelings for Total Maximum Daily Load (TMDL) development and the evaluation of TMDL implementation were performed.

Optimal Operating Condition of Vortex Separator for Combined Sewer Overflows Treatment (합류식 하수관거 월류수 처리를 위한 와류형 분리장치의 최적 운전조건)

  • Han, Jung-kyun;Joo, Jae-young;Lee, Bum-joon;Na, Ji-hun;Park, Chul-hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.557-564
    • /
    • 2009
  • A combined sewer system can quickly drain both storm water and sewage, improve the living environment and resolve flood measures. A combined sewer system is much superior to separate sewer system in reduction of the non-point source pollutant load. However, during rainfall. it is impossible in time, space and economic terms to cope with the entire volume of storm water. A sewage system that exceeds the capacity of the sewer facilities drain into the river mixed with storm-water. In addition, high concentration of CSOs by first-flush increase pollution load and reduce treatment efficiency in sewage treatment plant. The aim of this study was to develope a processing unit for the removal of high CSOs concentrations in relation to water quality during rainfall events in a combined sewer. The most suitable operational design for processing facilities under various conditions was also determined. With a designed discharge of 19.89 m/min, the removal efficiency was good, without excessive overflow, but it was less effective in relation to underflow, and decreased with decreasing particle size and specific gravity. It was necessary to lessen radius of vortex separator for increasing inlet velocity in optimum range for efficient performance, and removal efficiency was considered to high because of rotation increases through enlargement of comparing height of vortex separator in diameter. By distribution of influent particle size, the actual turbulent flow and experimental results was a little different from the theoretical removal efficiency due to turbulent effect in device.

Characteristics of Non-point Pollution Discharge on Stormwater Runoff from Lake Doam Watershed (도암호 유역의 강우시 비점오염물질 유출 특성)

  • Kwak, Sung-Jin;Bhattrai, Bal Dev;Kim, Eun-Jung;Lee, Chang-Keun;Lee, Hyeong-Jin;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.62-71
    • /
    • 2012
  • Lake Doam watershed was surveyed to evaluate non-point source discharge characteristics and discharge load including several water quality parameters in Song Stream from July 2009 to July 2011. Concentrations of water pollutants were high during the rainfall period, especially, SS, TP and COD showed increasing tendencies toward cumulative water discharge but TN did not show much difference. SS, TP and COD had an initial flush effect of over 50 mm rainfall event but there was no clear tendency for rainfalls below that level. Event mean concentration (EMC) regarding the rainy and dry period showed large differences. Especially rainy season EMC (SS, TP, COD) demonstrated an increasingly high tendency. EMCs of COD, SS, TN and TP measured for twelve rain events were as high as 26.1, 866.0, 4.68 and 0.605 mg $L^{-1}$, respectively. COD, SS, TN and TP loadings from the highland agricultural region of the Song Stream watershed were 34,263, 1,250,254, 2,673 and 933 kg $yr^{-1}\;km^{-2}$, respectively, which were relatively higher than the results of other stream systems. Therefore, it is strongly recommended that long-term monitoring and non-point pollution reduction programs for the highland agricultural area to continue. Furthermore, this non-point source pollution loading research acquired from the highland agricultural area could be the base for reassessment.

Correlation between operation factors and nitritation using anaerobic digester supernatant at ordinary temperature (상온 조건에서 혐기 소화 상징액을 이용한 아질산화 반응과 운전 인자의 상관성 분석)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.244-249
    • /
    • 2016
  • Anaerobic digester supernatant including high concentrations of nitrogen is recycled to water treatment line and make pollutant load increase in municipal wastewater treatment plant(MWTP). To treat nitrogen in anaerobic digester supernatant is suggested the method of MWTP retrofit. In this study, the lab scale reactor was operated about 200 days using supernatant of anaerobic digester. The results could draw operation condition that ammonium nitrogen removal efficiency more than 90% and nitrite conversion efficiency over 70%. Correlation between operation efficiency and operation factors was analyzed based on the operation results. Ammonium nitrogen remove efficiency and nitrite conversion efficiency were related to solid retention time (SRT), ammonium nitrogen load and ammonium nitrogen loading per unit mixed liquer suspended solid (MLSS). Results of this study can be used effective data on nitritation of supernatant of anaerobic digester, and be expected to increase availability of nitritation.

Design Model of Constructed Wetlands for Water Quality Management of Non-point Source Pollution in Rural Watersheds (농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형)

  • 최인욱;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.96-105
    • /
    • 2002
  • As an useful water purification system for non-point source pollution in rural watersheds, interests in constructed wetlands are growing at home and abroad. It is well known that constructed wetlands are easily installed, no special managemental needs, and more flexible at fluctuating influent loads. They have a capacity for purification against nutrient materials such as phosphorus and nitrogen causing eutrophication of lentic water bodies. The Constructed Wetland Design Model (CWDM), developed through this study is consisted mainly of Database System, Runoff-discharge Prediction Submodel, Water Quality Prediction Submodel, and Area Assessment Submodel. The Database System includes data of watershed, discharge, water quality, pollution source, and design factors for the constructed wetland. It supplies data when predicting water quality and calculating the required areas of constructed wetlands. For the assessment of design flow, the GWLF (Generalized Watershed Loading Function) is used, and for water quality prediction in streams estimating influent pollutant load, Water Quality Prediction Submodel, that is a submodel of DSS-WQMRA model developed by previous works is amended. The calculation of the required areas of constructed wetlands is achieved using effluent target concentrations and area calculation equations that developed from the monitoring results in the United States. The CWDM is applied to Bokha watershed to appraise its application by assessing design flow and predicting water quality. Its application is performed through two calculations: one is to achieve each target effluent concentrations of BOD, SS, T-N and T-P, the other is to achieve overall target effluent concentrations. To prove the validity of the model, a comparison of unit removal rates between the calculated one from this study and the monitoring result from existing wetlands in Korea, Japan and United States was made. As a result, the CWDM could be very useful design tool for the constructed wetland in rural watersheds and for the non-point source pollution management.