• Title/Summary/Keyword: Unit model

Search Result 4,455, Processing Time 0.032 seconds

Prediction of Carbon Accumulation within Semi-Mangrove Ecosystems Using Remote Sensing and Artificial Intelligence Modeling in Jeju Island, South Korea (원격탐사와 인공지능 모델링을 활용한 제주도 지역의 준맹그로브 탄소 축적량 예측)

  • Cheolho Lee;Jongsung Lee;Chaebin Kim;Yeounsu Chu;Bora Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.161-170
    • /
    • 2023
  • We attempted to estimate the carbon accumulation of Hibiscus hamabo and Paliurus ramosissimus, semimangroves native to Jeju Island, by remote sensing and to build an artificial intelligence model that predicts its spatial variation with climatic factors. The aboveground carbon accumulation of semi-mangroves was estimated from the aboveground biomass density (AGBD) provided by the Global Ecosystem Dynamics Investigation (GEDI) lidar upscaled using the normalized difference vegetation index (NDVI) extracted from Sentinel-2 images. In Jeju Island, carbon accumulation per unit area was 16.6 t C/ha for H. hamabo and 21.1 t C/ha for P. ramosissimus. Total carbon accumulation of semi-mangroves was estimated at 11.5 t C on the entire coast of Jeju Island. Random forest analysis was applied to predict carbon accumulation in semi-mangroves according to environmental factors. The deviation of aboveground biomass compared to the distribution area of semi-mangrove forests in Jeju Island was calculated to analyze spatial variation of biomass. The main environmental factors affecting this deviation were the precipitation of the wettest month, the maximum temperature of the warmest month, isothermality, and the mean temperature of the wettest quarter. The carbon accumulation of semi-mangroves predicted by random forest analysis in Jeju Island showed spatial variation in the range of 12.0 t C/ha - 27.6 t C/ha. The remote sensing estimation method and the artificial intelligence prediction method of carbon accumulation in this study can be used as basic data and techniques needed for the conservation and creation of mangroves as carbon sink on the Korean Peninsula.

A Groundwater Potential Map for the Nakdonggang River Basin (낙동강권역의 지하수 산출 유망도 평가)

  • Soonyoung Yu;Jaehoon Jung;Jize Piao;Hee Sun Moon;Heejun Suk;Yongcheol Kim;Dong-Chan Koh;Kyung-Seok Ko;Hyoung-Chan Kim;Sang-Ho Moon;Jehyun Shin;Byoung Ohan Shim;Hanna Choi;Kyoochul Ha
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.71-89
    • /
    • 2023
  • A groundwater potential map (GPM) was built for the Nakdonggang River Basin based on ten variables, including hydrogeologic unit, fault-line density, depth to groundwater, distance to surface water, lineament density, slope, stream drainage density, soil drainage, land cover, and annual rainfall. To integrate the thematic layers for GPM, the criteria were first weighted using the Analytic Hierarchical Process (AHP) and then overlaid using the Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) model. Finally, the groundwater potential was categorized into five classes (very high (VH), high (H), moderate (M), low (L), very low (VL)) and verified by examining the specific capacity of individual wells on each class. The wells in the area categorized as VH showed the highest median specific capacity (5.2 m3/day/m), while the wells with specific capacity < 1.39 m3/day/m were distributed in the areas categorized as L or VL. The accuracy of GPM generated in the work looked acceptable, although the specific capacity data were not enough to verify GPM in the studied large watershed. To create GPMs for the determination of high-yield well locations, the resolution and reliability of thematic maps should be improved. Criterion values for groundwater potential should be established when machine learning or statistical models are used in the GPM evaluation process.

Analysis of Changes in Restaurant Attributes According to the Spread of Infectious Diseases: Application of Text Mining Techniques (감염병 확산에 따른 레스토랑 선택속성 변화 분석: 텍스트마이닝 기법 적용)

  • Joonil Yoo;Eunji Lee;Chulmo Koo
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.89-112
    • /
    • 2023
  • In March 2020, as it was declared a COVID-19 pandemic, various quarantine measures were taken. Accordingly, many changes have occurred in the tourism and hospitality industries. In particular, quarantine guidelines, such as the introduction of non-face-to-face services and social distancing, were implemented in the restaurant industry. For decades, research on restaurant attributes has emphasized the importance of three attributes: atmosphere, service quality, and food quality. Nevertheless, to the best of our knowledge, research on restaurant attributes considering the COVID-19 situation is insufficient. To respond to this call, this study attempted an exploratory approach to classify new restaurant attributes based on understanding environmental changes. This study considered 31,115 online reviews registered in Naverplace as an analysis unit, with 475 general restaurants located in Euljiro, Seoul. Further, we attempted to classify restaurant attributes by clustering words within online reviews through TF-IDF and LDA topic modeling techniques. As a result of the analysis, the factors of "prevention of infectious diseases" were derived as new attributes of restaurants in the context of COVID-19 situations, along with the atmosphere, service quality, and food quality. This study is of academic significance by expanding the literature of existing restaurant attributes in that it categorized the three attributes presented by existing restaurant attributes and further presented new attributes. Moreover, the analysis results have led to the formulation of practical recommendations, considering both the operational aspects of restaurants and policy implications.

Prediction of Patient Management in COVID-19 Using Deep Learning-Based Fully Automated Extraction of Cardiothoracic CT Metrics and Laboratory Findings

  • Thomas Weikert;Saikiran Rapaka;Sasa Grbic;Thomas Re;Shikha Chaganti;David J. Winkel;Constantin Anastasopoulos;Tilo Niemann;Benedikt J. Wiggli;Jens Bremerich;Raphael Twerenbold;Gregor Sommer;Dorin Comaniciu;Alexander W. Sauter
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.994-1004
    • /
    • 2021
  • Objective: To extract pulmonary and cardiovascular metrics from chest CTs of patients with coronavirus disease 2019 (COVID-19) using a fully automated deep learning-based approach and assess their potential to predict patient management. Materials and Methods: All initial chest CTs of patients who tested positive for severe acute respiratory syndrome coronavirus 2 at our emergency department between March 25 and April 25, 2020, were identified (n = 120). Three patient management groups were defined: group 1 (outpatient), group 2 (general ward), and group 3 (intensive care unit [ICU]). Multiple pulmonary and cardiovascular metrics were extracted from the chest CT images using deep learning. Additionally, six laboratory findings indicating inflammation and cellular damage were considered. Differences in CT metrics, laboratory findings, and demographics between the patient management groups were assessed. The potential of these parameters to predict patients' needs for intensive care (yes/no) was analyzed using logistic regression and receiver operating characteristic curves. Internal and external validity were assessed using 109 independent chest CT scans. Results: While demographic parameters alone (sex and age) were not sufficient to predict ICU management status, both CT metrics alone (including both pulmonary and cardiovascular metrics; area under the curve [AUC] = 0.88; 95% confidence interval [CI] = 0.79-0.97) and laboratory findings alone (C-reactive protein, lactate dehydrogenase, white blood cell count, and albumin; AUC = 0.86; 95% CI = 0.77-0.94) were good classifiers. Excellent performance was achieved by a combination of demographic parameters, CT metrics, and laboratory findings (AUC = 0.91; 95% CI = 0.85-0.98). Application of a model that combined both pulmonary CT metrics and demographic parameters on a dataset from another hospital indicated its external validity (AUC = 0.77; 95% CI = 0.66-0.88). Conclusion: Chest CT of patients with COVID-19 contains valuable information that can be accessed using automated image analysis. These metrics are useful for the prediction of patient management.

Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT

  • Hyunjung Yeoh;Sung Hwan Hong;Chulkyun Ahn;Ja-Young Choi;Hee-Dong Chae;Hye Jin Yoo;Jong Hyo Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1850-1857
    • /
    • 2021
  • Objective: The purpose of this study was to assess whether a deep learning (DL) algorithm could enable simultaneous noise reduction and edge sharpening in low-dose lumbar spine CT. Materials and Methods: This retrospective study included 52 patients (26 male and 26 female; median age, 60.5 years) who had undergone CT-guided lumbar bone biopsy between October 2015 and April 2020. Initial 100-mAs survey images and 50-mAs intraprocedural images were reconstructed by filtered back projection. Denoising was performed using a vendor-agnostic DL model (ClariCT.AITM, ClariPI) for the 50-mAS images, and the 50-mAs, denoised 50-mAs, and 100-mAs CT images were compared. Noise, signal-to-noise ratio (SNR), and edge rise distance (ERD) for image sharpness were measured. The data were summarized as the mean ± standard deviation for these parameters. Two musculoskeletal radiologists assessed the visibility of the normal anatomical structures. Results: Noise was lower in the denoised 50-mAs images (36.38 ± 7.03 Hounsfield unit [HU]) than the 50-mAs (93.33 ± 25.36 HU) and 100-mAs (63.33 ± 16.09 HU) images (p < 0.001). The SNRs for the images in descending order were as follows: denoised 50-mAs (1.46 ± 0.54), 100-mAs (0.99 ± 0.34), and 50-mAs (0.58 ± 0.18) images (p < 0.001). The denoised 50-mAs images had better edge sharpness than the 100-mAs images at the vertebral body (ERD; 0.94 ± 0.2 mm vs. 1.05 ± 0.24 mm, p = 0.036) and the psoas (ERD; 0.42 ± 0.09 mm vs. 0.50 ± 0.12 mm, p = 0.002). The denoised 50-mAs images significantly improved the visualization of the normal anatomical structures (p < 0.001). Conclusion: DL-based reconstruction may enable simultaneous noise reduction and improvement in image quality with the preservation of edge sharpness on low-dose lumbar spine CT. Investigations on further radiation dose reduction and the clinical applicability of this technique are warranted.

Customer-perceived distributive peer justice climate, community identification, C2C interaction quality, and helping intention in MMORPG contexts (고객의 분배공정성분위기 지각과 커뮤니티동일시, 고객간상호작용인식, 도움행동의도의 관계에 대한 연구)

  • Hyun Sik Kim
    • Journal of Service Research and Studies
    • /
    • v.14 no.2
    • /
    • pp.158-177
    • /
    • 2024
  • This paper proposes and tests a theoretical model of the relational link between a novel form of customer-perceived fairness for a reward design (distributive peer justice climate) and C2C helping intention via community identification and online C2C interaction (friend-, neighboring customer-, audience-interaction) qualities in a collective consumption context (MMORPG). To test hypotheses, we amassed survey data within a collective consumption context (massively multiplayer online role-playing games, MMORPGs). We used structural equation modeling in analyzing the survey data. The results reveal that user-perceived distributive peer justice climate for a reward design enhances their C2C helping intention via community identification and C2C interactions in MMORPG contexts. Collective consumption-type service managers should focus on promoting the user-perceived distributive peer justice climate for their reward system to enhance users' present C2C co-creation experience (community identification, C2C interaction) and future C2C co-creation behavior (helping intention). By adopting an intra-unit level distributive justice concept (customer-perceived distributive peer justice climate) to a reward design in a collective consumption context (MMORPGs), this study informed collective consumption-type service managers of the importance of its management.

Effectiveness of a Clinical Pathway for Breast Cancer Patients Undergoing Surgical Operation on Clinical Outcomes and Costs

  • Jeong Hyun Park;Danbee Kang;Seok Jin Nam;Jeong Eon Lee;Seok Won Kim;Jonghan Yu;Byung Joo Chae;Se Kyung Lee;Jai Min Ryu;Yeon Hee Park;Mangyeong Lee;Juhee Cho
    • Quality Improvement in Health Care
    • /
    • v.30 no.1
    • /
    • pp.120-131
    • /
    • 2024
  • Purpose: This study aimed to evaluate the impact of implementing a clinical pathways (CPs) on the clinical outcomes and costs of patients undergoing breast cancer surgery. Methods: This retrospective cohort study included patients who were newly diagnosed with primary breast cancer at the Samsung Medical Center between 2014 and 2019 (N=8482; 2931 patients in the pre-path and 5551 patients in the post-path). Clinical outcomes included reoperation during hospitalization, readmission, and emergency room visits within 30 days of discharge. The cost data for each unit were obtained from an activity-based management accounting system. We performed an interrupted time series analysis. Results: The post-path period showed a significantly shorter hospital length of stay (LOS) than the pre-path period (6.3 days in pre-path vs. 5.0 days in post-path; -1.3 days' difference; p=.001), and fewer reoperations during hospitalization and within 30 days after discharge than the pre-path period. After adjusting for inflation rates and relative value scores, the model demonstrated savings of $146 per patient in the post-path for total costs, and $537 per patient for patient out-of-pocket costs (p=.001). Conclusion: CPs can help reduce costs without compromising the quality of care by reducing the number of reoperations, readmissions, and complications.

Numerical and experimental investigations on the aerodynamic and aeroacoustic performance of the blade winglet tip shape of the axial-flow fan (축류팬 날개 끝 윙렛 형상의 적용 유무에 따른 공기역학적 성능 및 유동 소음에 관한 수치적/실험적 연구)

  • Seo-Yoon Ryu;Cheolung Cheong;Jong Wook Kim;Byeong Il Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.103-111
    • /
    • 2024
  • Axial-flow fans are used to transport fluids in relatively low-pressure flow regimes, and a variety of design variables are employed. The tip geometry of an axial fan plays a dominant role in its flow and noise performance, and two of the most prominent flow phenomena are the tip vortex and the tip leakage vortex that occur at the tip of the blade. Various studies have been conducted to control these three-dimensional flow structures, and winglet geometries have been developed in the aircraft field to suppress wingtip vortices and increase efficiency. In this study, a numerical and experimental study was conducted to analyze the effect of winglet geometry applied to an axial fan blade for an air conditioner outdoor unit. The unsteady Reynolds-Averaged Navier-Stokes (RANS) equation and the FfocwsWilliams and Hawkings (FW-H) equation were numerically solved based on computational fluid dynamics techniques to analyze the three-dimensional flow structure and flow noise numerically, and the validity of the numerical method was verified by comparison with experimental results. The differences in the formation of tip vortex and tip leakage vortex depending on the winglet geometry were compared through a three-dimensional flow field, and the resulting aerodynamic performance was quantitatively compared. In addition, the effect of winglet geometry on flow noise was evaluated by numerically simulating noise based on the predicted flow field. A prototype of the target fan model was built, and flow and noise experiments were conducted to evaluate the actual performance quantitatively.

Development of a Prediction Model for Personal Thermal Sensation on Logistic Regression Considering Urban Spatial Factors (도시공간적 요인을 고려한 로지스틱 회귀분석 기반 체감더위 예측 모형 개발)

  • Uk-Je SUNG;Hyeong-Min PARK;Jae-Yeon LIM;Yu-Jin SEO;Jeong-Min SON;Jin-Kyu MIN;Jeong-Hee EUM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.81-98
    • /
    • 2024
  • This study analyzed the impact of urban spatial factors on the thermal environment. The personal thermal sensation was set as the unit of thermal environment to analyze its correlation with environmental factors. To collect data on personal thermal sensation, Living Lab was applied, allowing citizens to record their thermal sensation and measure the temperature. Based on the input points of the collected personal thermal sensation, nearby urban spatial elements were collected to build a dataset for statistical analysis. Logistic regression analysis was conducted to analyze the impact of each factor on personal thermal sensation. The analysis results indicate that the temperature is influenced by the surrounding spatial environment, showing a negative correlation with building height, greenery rate, and road rate, and a positive correlation with sky view factor. Furthermore, the road rate, sky view factor, and greenery rate, in that order, had a strong impact on perceived heat. The results of this study are expected to be utilized as basic data for assessing the thermal environment to prepare local thermal environment measures in response to climate change.

Exploring automatic scoring of mathematical descriptive assessment using prompt engineering with the GPT-4 model: Focused on permutations and combinations (프롬프트 엔지니어링을 통한 GPT-4 모델의 수학 서술형 평가 자동 채점 탐색: 순열과 조합을 중심으로)

  • Byoungchul Shin;Junsu Lee;Yunjoo Yoo
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.187-207
    • /
    • 2024
  • In this study, we explored the feasibility of automatically scoring descriptive assessment items using GPT-4 based ChatGPT by comparing and analyzing the scoring results between teachers and GPT-4 based ChatGPT. For this purpose, three descriptive items from the permutation and combination unit for first-year high school students were selected from the KICE (Korea Institute for Curriculum and Evaluation) website. Items 1 and 2 had only one problem-solving strategy, while Item 3 had more than two strategies. Two teachers, each with over eight years of educational experience, graded answers from 204 students and compared these with the results from GPT-4 based ChatGPT. Various techniques such as Few-Shot-CoT, SC, structured, and Iteratively prompts were utilized to construct prompts for scoring, which were then inputted into GPT-4 based ChatGPT for scoring. The scoring results for Items 1 and 2 showed a strong correlation between the teachers' and GPT-4's scoring. For Item 3, which involved multiple problem-solving strategies, the student answers were first classified according to their strategies using prompts inputted into GPT-4 based ChatGPT. Following this classification, scoring prompts tailored to each type were applied and inputted into GPT-4 based ChatGPT for scoring, and these results also showed a strong correlation with the teachers' scoring. Through this, the potential for GPT-4 models utilizing prompt engineering to assist in teachers' scoring was confirmed, and the limitations of this study and directions for future research were presented.