• Title/Summary/Keyword: Unit model

Search Result 4,431, Processing Time 0.03 seconds

A MICROSTRUCTURAL MODEL OF THE THERMAL CONDUCTIVITY OF DISPERSION TYPE FUELS WITH A FUEL MATRIX INTERACTION LAYER

  • Williams, A.F.;Leitch, B.W.;Wang, N.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.839-846
    • /
    • 2013
  • This paper describes a finite element model of the microstructure of dispersion type nuclear fuels, which can be used to determine the effective thermal conductivity of the fuels during irradiation. The model simulates a representative region of the fuel as a prism shaped unit cell made of brick elements. The elements within the unit cell are assigned material properties of either the fuel or the matrix depending on position, in such a way as to represent randomly distributed fuel particles with a size distribution similar to that of the as manufactured fuel. By applying an appropriate heat flux across the unit cell it is possible to determine the effective thermal conductivity of the unit cell as a function of the volume fraction of the fuel particles. The presence of a fuel/matrix interaction layer is simulated by the addition of a third set of material properties that are assigned to the finite elements that surround each fuel particle. In this way the effective thermal conductivity of the material may also be determined as a function of the volume fraction of the interaction layer. Work is on going to add fission gas bubbles in the fuel as a fourth phase to the model.

Development of robot work measurement by the unit motion model (단위 동작 모형에 따른 로봇 작업시간 측정법의 개발)

  • 권규식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.367-370
    • /
    • 1996
  • This study deals with the motion modeling by the unit motion of robots and the work measurement through classification of robot motions and standardization. The proposed approach is to scrutinize the Predetermined Time Standards(PTS) methods for measurement of manual tasks performed by people and the basic motions for accomplishing that tasks. And then, it constructs the unit motion models as subsets composed with the basic motions. It apply together with movements distance as a time variable, too. These results are used for the work measurements of robots by the unit motion models.

  • PDF

Estimation of the Probability Distribution Model on the Load of Transport of the Unit Module (유닛모듈 운반하중에 관한 확률분포 모델 추정)

  • Park, Nam cheon;Kim, kyoon Tai;Kim, Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.220-221
    • /
    • 2014
  • Recently It has been required the research for the load of transport of the unit module to secure the safety of the transport locking device. So the purpose of this study is to analyze the probability distribution of the load of transport of unit modular when transporting unit modular by vehicle.

  • PDF

Optimal placement of viscoelastic dampers and supporting members under variable critical excitations

  • Fujita, Kohei;Moustafa, Abbas;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.43-67
    • /
    • 2010
  • A gradient-based evolutionary optimization methodology is presented for finding the optimal design of both the added dampers and their supporting members to minimize an objective function of a linear multi-storey structure subjected to the critical ground acceleration. The objective function is taken as the sum of the stochastic interstorey drifts. A frequency-dependent viscoelastic damper and the supporting member are treated as a vibration control device. Due to the added stiffness by the supplemental viscoelastic damper, the variable critical excitation needs to be updated simultaneously within the evolutionary phase of the optimal damper placement. Two different models of the entire damper unit are investigated. The first model is a detailed model referred to as "the 3N model" where the relative displacement in each component (i.e., the spring and the dashpot) of the damper unit is defined. The second model is a simpler model referred to as "the N model" where the entire damper unit is converted into an equivalent frequency-dependent Kelvin-Voigt model. Numerical analyses for 3 and 10-storey building models are conducted to investigate the characters of the optimal design using these models and to examine the validity of the proposed technique.

Development of a Hybrid Watershed Model STREAM: Model Structures and Theories (복합형 유역모델 STREAM의 개발(I): 모델 구조 및 이론)

  • Cho, Hong-Lae;Jeong, Euisang;Koo, Bhon Kyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.491-506
    • /
    • 2015
  • Distributed models represent watersheds using a network of numerous, uniform calculation units to provide spatially detailed and consistent evaluations across the watershed. However, these models have a disadvantage in general requiring a high computing cost. Semi-distributed models, on the other hand, delineate watersheds using a simplified network of non-uniform calculation units requiring a much lower computing cost than distributed models. Employing a simplified network of non-uniform units, however, semi-distributed models cannot but have limitations in spatially-consistent simulations of hydrogeochemical processes and are often not favoured for such a task as identifying critical source areas within a watershed. Aiming to overcome these shortcomings of both groups of models, a hybrid watershed model STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model) was developed in this study. Like a distributed model, STREAM divides a watershed into square grid cells of a same size each of which may have a different set of hydrogeochemical parameters reflecting the spatial heterogeneity. Like many semi-distributed models, STREAM groups individual cells of similar hydrogeochemical properties into representative cells for which real computations of the model are carried out. With this hybrid structure, STREAM requires a relatively small computational cost although it still keeps the critical advantage of distributed models.

Development of GPU-accelerated kinematic wave model using CUDA fortran (CUDA fortran을 이용한 GPU 가속 운동파모형 개발)

  • Kim, Boram;Park, Seonryang;Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.887-894
    • /
    • 2019
  • We proposed a GPU (Grapic Processing Unit) accelerated kinematic wave model for rainfall runoff simulation and tested the accuracy and speed up performance of the proposed model. The governing equations are the kinematic wave equation for surface flow and the Green-Ampt model for infiltration. The kinematic wave equations were discretized using a finite volume method and CUDA fortran was used to implement the rainfall runoff model. Several numerical tests were conducted. The computed results of the GPU accelerated kinematic wave model were compared with several measured and other numerical results and reasonable agreements were observed from the comparisons. The speed up performance of the GPU accelerated model increased as the number of grids increased, achieving a maximum speed up of approximately 450 times compared to a CPU (Central Processing Unit) version, at least for the tested computing resources.

A Study on Unit Model Development of Urban Type Silver Housing Applying Open Housing Concept -In Response to the kinds and process of diabetes elders- (오픈 하우징 개념을 적용한 도시형 노인 공동주거시설의 주호 모형 개발에 관한 연구 -당뇨병 노인의 질병 종류와 진행에 대응하여-)

  • Lee, Bo-Ram;Yoon, Chae-Shin
    • Journal of the Korean housing association
    • /
    • v.18 no.5
    • /
    • pp.11-22
    • /
    • 2007
  • The purpose of this study is to propose prototypical plans for a dwelling unit applying the concepts of 'open housing' and 'aging in place' for senior citizens living in cities focusing on specific life patterns with chronic disease. Especially, a unit was designed for diabetes patients because diabetes, a representative disease of elderly people, often accompanies complications such as arthritis and Alzheimer disease. A unit design suitable for the convenient life of the elderly people with diabetes will provide a guideline for the similar unit designs of the senior citizens with other diseases. In this study, three types of unit plan are proposed. A-type plan is for type-1 diabetes patients, B-type alt.1 for the independent seniors of type-2 diabetes patients, and B-type alt.2 for the dependant seniors of type-2 diabetes patients. And a support design for a unit plan with the exclusive area of $60\;m^2$ is proposed. The same support design is used for all three unit types. Although the locations of bathroom and storage room are fixed and the location of the kitchen is changeable only in wet-zone. In conclusion, senior residents with diabetes can choose one of three unit types before occupation and the chosen unit type can be renovated by replacing infill systems as the health condition or life style changes.

Determination of Optimal Unit Hydrographs and Infiltration Rate Functions at the site of the Su-Jik Bridge in the HwangGuJichen River (황구지천 수직교 지점에서의 최적 단위도 및 침투율의 결정)

  • Ahn, Taejin;Cho, Byung Doon;Lyu, Heui Jeong
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.57-66
    • /
    • 2005
  • This paper is to present the determination of the optimal loss rate parameters and unit hydrographs from the observed single rainfall-runoff event using optimization model. The linear program models has been formulated to derive the optimal unit hydrographs and loss rate parameters for the site of the Su-Jik Bridge in the HwangGuJichen River; one minimizes the summation of the absolute residual between predicted and observed runoff ordinates. In the perturbation stage of parameters the trial and error method has been adopted to determine the loss rate parameters for Kostiakov's, Philip's, Horton's, and Green-Ampt's equation. The unique unit hydrograph ordinates for a given rainfall-runoff event is exclusively obtained with ${\Phi}$ index, but unit hydrograph ordinates depend upon the parameters for each loss rate equations. In this paper the single rainfall-runoff event observed from the sample watershed is considered to test the proposed method. The optimal unit hydrograph obtained by the optimization model has smaller deviations than the ones by the conventional method.

  • PDF

Effects of the Modifiable Areal Unit Problem (MAUP) on a Spatial Interaction Model (공간 상호작용 모델에 대한 공간단위 수정가능성 문제(MAUP)의 영향)

  • Kim, Kam-Young
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.2
    • /
    • pp.197-211
    • /
    • 2011
  • Due to the complexity of spatial interaction and the necessity of spatial representation and modeling, aggregation of spatial interaction data is indispensible. Given this, the purpose of this paper is to evaluate the effects of modifiable areal unit problem (MAUP) on a spatial interaction model. Four aggregation schemes are utilized at eight different scales: 1) randomly select seeds of district and then allocate basic spatial units to them, 2) minimize the sum of population weighted distance within a district, 3) maximize the proportion of flow within a district, and 4) minimize the proportion of flow within a district. A simple Poisson regression model with origin and destination constraints is utilized. Analysis results demonstrate that spatial characteristics of residuals, parameter values, and goodness-of-fit of the model were influenced by aggregation scale and schemes. Overall, the model responded more sensitively to aggregation scale than aggregation schemes and the scale effect on the model was varied according to aggregation schemes.

Economic performance of cable supported bridges

  • Sun, Bin;Zhang, Liwen;Qin, Yidong;Xiao, Rucheng
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.621-652
    • /
    • 2016
  • A new cable-supported bridge model consisting of suspension parts, self-anchored cable-stayed parts and earth-anchored cable-stayed parts is presented. The new bridge model can be used for suspension bridges, cable-stayed bridges, cable-stayed suspension bridges, and partially earth-anchored cable-stayed bridges by varying parameters. Based on the assumption that each structural member is in either an axial compressive or tensile state, and the stress in each member is equal to the allowable stress of the material, the material quantity for each component is calculated. By introducing the unit cost of each type of material, the estimation formula for the cost of the new bridge model is developed. Numerical examples show that the results from the estimation formula agree well with that from the real projects. The span limit of cable supported bridge depends on the span-to-height ratio and the density-to-strength ratio of cables. Finally, a parametric study is illustrated aiming at the relations between three key geometrical parameters and the cost of the bridge model. The optimization of the new bridge model indicates that the self-anchored cable-stayed part is always the dominant part with the consideration of either the lowest total cost or the lowest unit cost. It is advisable to combine all three mentioned structural parts in super long span cable supported bridges to achieve the most excellent economic performance.