• 제목/요약/키워드: Unit loads

Search Result 426, Processing Time 0.023 seconds

Evaluation of Effective Rainfall Ratio Method for Estimating Unit Load from Paddy Fields (비우량 방법에 의한 논 오염부하 원단위 산정시 적용성 평가)

  • Jung, Jae-Woon;Yoon, Kwang-Sik;Yoon, Suk-Gun;Choi, Woo-Jung;Choi, Woo-Young;Huh, Yu-Jeong;Cho, Kyeong-Min;Hong, Jung-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.849-854
    • /
    • 2009
  • Pollutant unit load (unit-load) reported by Ministry of Environment (MOE) in 1995 has been a useful method for watershed management and environmental policy decision. The unit-load has been estimated using effective rainfall ratio method. However, reliability of unit-load determined by the method has been criticized especially for paddy field and upland conditions. In this paper the unit-load of paddy field estimated by effective rainfall ratio method was compared with continuous monitoring data. Annual loads was simulated by the method choosing 5~6 storm events randomly from whole events collected. Probability distribution of difference between results by the method and measured data was investigated. The results showed that unit-load derived by the method was generally lesser than measured unit-load and showed wide variations. Therefore, unit-load estimation of paddy fields by effective rainfall ratio method need caution.

Assesment of Water Quality Standards using Stochastic Distribution Characteristics between Dynamic Modeling Results and Observed Data (동적수질예측결과의 확률분포특성을 이용한 목표수질 달성가능성 평가)

  • Ha, Sung-Ryong;Lee, Ji-Heon;Seo, Se-Deok;Lee, Seung-Chul;Park, Jung-Ha
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • Total Maximum Daily Load(TMDL) is a core basin management system to assign total emissions of pollutants to unit basin and emission source within a limit of the target water quality and to secure sustainability. considering "Environment and development" together. By current technical guidance of TMDL, the water quality in the riverbed of which the target water quality is noticed, must achieve the target; and the water quality standard for evaluating achievement of the target should be prescribed as non-excessive probability quality of water on the basis of the pertinent water quality documents. Therefore, the study calculated the target water quality by each unit basin which the target water quality must be noticed through the analysis of probability for water quality documents in rivers at the time of establishing a plan, and the study evaluated the achievement possibility of the target water quality by analyzing and comparing the target water quality plan with the standard water quality to evaluate the achievement of the target water quality. As the result, applying the proposed method to Mihocheon River system, it is concluded that selected the target water quality (Each BOD 3.3mg/1 and BOD 3.0mg/1) in Miho A and Musim A is available. Of course, it showed that the target water quality: BOD 2.5mg/1 in Miho A and BOD 3.0mg/1 in Musim A, could be achieved if the small reduction in B unit area was implemented.

Effects of Number of bays and Bracing Member on the Ultimate Behavior of System Scaffolds (Bay 수와 가새재 설치가 시스템 비계 극한거동에 미치는 영향)

  • Lee, Sun-Woo;Jang, Nam-Kwon;Won, Jeong-Hun;Jeong, Seong-choon
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.6-15
    • /
    • 2020
  • This study examined the structural behaviors and ultimate loads of assembled system scaffolds by load tests. Considering the number of bay and bracing installation, four specimens were tested. The bays were divided into 1 bay and 2 bays, with and without the bracing member installed. Failure modes and horizontal displacements show that the whole column buckled without showing no point of inflection in the column, regardless of whether or not braces were installed. Thus, the current design method of selecting the vertical spacing between the horizontal members of the system scaffold as the effective buckling length underestimates the effective buckling length. In case of 1 bay specimens, the ultimate loads between specimens with and with bracing members are similar. However, in case of 2 bay specimens, the specimen with bracing members shows the increased ultimate load of 36% compared with that without bracing members. In addition, as the number of bays in the system scaffold increases, the ultimate load of the unit vertical column increases in case of the specimen with bracing installation. However, in the specimen without bracing members, the ultimate load of the unit column reduces with the increment of the number of bays due to the torsional buckling. Therefore, it is essential to install bracing members to increase the whole strength of system scaffolds and the ultimate load of the unit column.

Counter-Rotating Type Pumping Unit (Impeller Speeds in Smart Control)

  • Kanemoto, Toshiaki;Komaki, Keiichi;Katayama, Masaaki;Fujimura, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.334-340
    • /
    • 2011
  • Turbo-pumps have weak points, such as the pumping operation is unstable on the positive slope of the head curve and/or the cavitation occurs at the low suction head. To improve simultaneously both weak points, the first author invented the unique pumping unit composed of the tandem impellers and the peculiar motor with the double rotational armatures. The front and the rear impellers are driven by the inner and the outer armatures of the motor, respectively. Both impeller speeds are automatically and smartly adjusted in response to the pumping discharge, while the rotational torques between both impellers/armatures are counter-balanced. Such speeds contribute to suppress successfully not only the unstable operation at the low discharge but also the cavitation at the high discharge, as verified with the axial flow type pumping unit in the previous paper. Continuously, this paper investigates experimentally the effects of the tandem impeller profiles on the pump performances and the rotational speeds against the discharge, using the impellers whose loads are low and/or high at the normal discharge. The worthy remarks are that (a) the unstable operation is suppressed as expected and the shut off power is scarcely large in the smart control, (b) the blade profile contributes to determine the discharge giving the maximum/minimum rotational speed where the reverse flow may incipiently appears at the front impeller inlet, (c) the tandem impeller profiles scarcely affect the rotational speeds, while the loads of the front and the rear impellers are same, but (d) the impeller with the low load must run faster and the impeller with the high load must run slower at the same discharge to take the same rotational torque, and (e) the reverse flow at the inlet and the swirling velocity component at the outlet of the front impeller with the high load require making the rotational speed of the rear impeller with low load fairly faster at the lower discharge.

Performance Appraisal of Total Maximum Daily Loads: Performance on Development/Reduction Plan and Water Quality Status of Unit Watershed (수질오염총량관리제의 성과평가: 개발/삭감계획의 이행실적 및 단위유역의 수질 현황)

  • Park, Jae Hong;Park, Jun Dae;Rhew, Doug Hee;Jung, Dong Il
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.481-493
    • /
    • 2009
  • This study was conducted to performance appraisal of Total Maximum Daily Loads (TMDLs), especially in terms of performance on development & reduction plan and water quality status of unit watershed. Because load allocations for pollution sources were predicted redundantly by uncertainty of prediction, TMDLs master plan has been frequently changed to acquire load allocation for local development. Therefore, It need to be developed more resonable prediction techniques of water pollution sources to preventing the frequent change. It is suggested that the reduction amount have to be distributed properly during the planning period. In other words, it has not to be concentrated on the specific year (especially final year of the planning period). The reason why, if the reduction amount concentrate on the final year of the planning period, allotment loading amount could not be achieved in some cases (e.g., insufficiency of budget, extension of construction duration). If the development plan was developed including uncertain developments, it is necessary to be developed reduction plan considered with them. However, some of the plans in the reduction plan could not be accomplished in some case. Because, it is not considered financial abilities of local governments. Consequently, development plan must be accomplished to avoid uncertain developments, and to consider financial assistance to support the implementation of effective plan. Water quality has been improved in many unit watersheds due to the TMDLs, especially in geum river and yeongsang/seomjin river.

Calculation of Pollutant Loads and Simulation of Water Quality in Juam Lake Watershed using GIS (GIS를 이용한 주암호 유역의 오염부하량 산정 및 수질모의)

  • Kim, Chul;Kim, Souk-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.3
    • /
    • pp.87-98
    • /
    • 2002
  • Point & nonpoint source pollutant loads were calculated in Juam lake watershed using GIS, and water quality was simulated using water quality model. Point source pollutant loads were estimated using the unit pollutant loads presented by the Ministry of Environment(MOE, 1998). Nonpoint source pollutant loads were estimated using the value of the direct runoff multiplied by expected mean concentration. The direct runoff was calculated using SCS curve number method. Water quality simulation was conducted using WASP model(2001) developed by U.S. EPA. In order to apply the model, Juam lake watershed was divided into 44 subbasins according to slope, elevation, soil type, landuse and precipitation. Then the model was applied to one subbasin. Simulation results were compared to observed values and the result should good agreement with each other.

  • PDF

Modeling the Effects of Low Impact Development on Runoff and Pollutant Loads from an Apartment Complex

  • Jeon, Ji-Hong;Lim, Kyoung-Jae;Choi, Dong-Hyuk;Kim, Tae-Dong
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.167-172
    • /
    • 2010
  • The effects of low impact development (LID) techniques, such as green roofs and porous pavements, on the runoff and pollutant load from an apartment complex were simulated using the Site Evaluation Tool (SET). The study site was the Olympic Village, a preexisting apartment complex in Seoul, South Korea, which has a high percentage of impervious surfaces (approximately 72% of the total area). Using the SET, the effects of replacing parking lots, sidewalks and driveways (37.5% of the total area) having porous pavements and rooftops (14.5% of the total area) with green roofs were simulated. The simulation results indicated that LID techniques reduced the surface runoff, and peak flow and pollutant load, and increased the evapotranspiration and soil infiltration of precipitation. Per unit area, the green roofs were better than the porous pavements at reducing the surface runoff and pollutant loads, while the porous pavements were better than green roofs at enhancing the infiltration to soil. This study showed that LID methods can be useful for urban stormwater management and that the SET is a useful tool for evaluating the effects of LID on urban hydrology and pollutant loads from various land covers.

Earthquake Resistance Capacity of a Typical Bridge by Connection Design (연결부분 설계에 의한 일반교량의 내진성능)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.543-550
    • /
    • 2010
  • Earthquake resistant design should provide a description of the structural failure mechanism under earthquakes as well as satisfy the requirement of other designs, e.g. design strengths of each structural member should be equal or greater than the required strengths. The reason of such a requirement is the randomness of seimic loads different from other loads. In this study, a typical bridge is selected as an analysis bridge and the procedure is given to get the ductile failure mechanism through connection design. It is shown with the procedure that the earthquake resistant capacity can be ensured within structural member's strengths required by other designs, without cost raise by strength increase of structural members or by use of shock absorbing device e.g. shock transfer unit.

A Review on Practical Use of Simple Analysis Method based on SDOF Model for the Stiffened Plate Structures subjected to Blast Loads (폭발하중을 받는 보강판 구조물의 간이 해석법에 대한 실용성 검토)

  • Kim, Ul-Nyeon;Ha, Simsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.70-79
    • /
    • 2020
  • The offshore installation units may be subjected to various accidental loads such as collision from supply vessels, impact from dropped objects, blast load from gas explosion and thermal load from fire. This paper deals with the design and strength evaluation method of the stiffened plate structures in response to a blast load caused by a gas explosion accident. It is a comprehensive review of various items used in actual project such as the size and type of the explosive loads, general design procedure/concept and analysis method. The structural analyses using simple analysis methods based on SDOF model and nonlinear finite element analysis are applied to the particular FPSO project. Also validation studies on the design guidance given by simple analysis method based on SDOF model have also considered several items such as backpressure effects, material behavior and duration time of the overpressure. A good correlation between the prediction made by simple analysis method based on SDOF model and nonlinear finite element analysis can be generally obtained up to the elastic limit.

Dynamic Method wiht a Maximum Difference [{1} over {2} logn] for Redistributing of Quantized Loads on Hypercubes (하이퍼큐브에서 최대오차가 [{1} over {2} logn] 인 양자화된 부하의 동적 재분배 기법)

  • Im, Hwa-Gyeong;Jang, Ju-Uk;Kim, Seong-Cheon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.9
    • /
    • pp.1064-1072
    • /
    • 1999
  • The well-known Dimension Exchange Method(DEM) to quantized loads may result in difference in assigned loads to processors as large as logn~units, in the worst case, after balancing for a hypercube of size n. In order to limit the increase of the accumulation of these differences, this paper proposes a method that limits the accumulation of the difference by redistributing an unit load (odd or even) of the same type, if possible, when there is a load distribution between two processors. We reduced the maximum difference to LCEIL logn over {2} RCEIL . The result shows the simulation experiments which show about 30% improvement in speedup compare to the DEM.