• Title/Summary/Keyword: Unit cell

Search Result 2,062, Processing Time 0.028 seconds

The effect of the matrix thickness on the long term performance of MCFC (매트릭스 두께가 MCFC 장기 성능에 미치는 영향)

  • Kim, Yun-Young;Han, Jong-Hee;Yoon, Sung-Pil;Nam, Suk-Woo;Lim, Tae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.170-179
    • /
    • 2005
  • Electrolyte loss is considered as one of the major obstacles limiting the life time of molten carbonate fuel cells (MCFCs). Unit cells with an effective area of 100 $cm^2$ were prepared and were operated to determine the optimum matrix thickness which contains the maximum amount of electrolyte without serious preformance loss caused by high resistance. Matrices with different thickness, 1.45, 1.8, and 2.3 mm, were used in unit cells and those cells were operared about 5000, 10000, and 4000 hrs. The unit cell used 1.8 mm thick matrix showed 0.85 V (at 150 mA/$cm^2$) as the intial performance and this cell voltage is not lower than the cell voltage obtained in the cell with 1 mm thick matrix. This cell was operated for 10000 hrs. The cell used 1.45 mm thick matrices showed 16.6 % in the electrolyte loss after 5000 hr operation. In the case of the cell with 2.3 mm thick matrix, the initial cell voltage was below 0.80 V (at 150 mA/$cm^2$). For thermal cycle test, the gas crossover amount of unit cell used 1.8 mm thick matrix was much less than that of the cell with 1.0 mm thick matrix.

Design of a Metamaterial Unit Cell Using an Interdigital Capacitor with Non-Bianisotropic Property (Non-Bianisotropy 특성을 갖는 IDC로 구성된 메타 물질 단위 셀 설계)

  • Kwon, Kyeol;Ha, Jae-Geun;Lee, Young-Ki;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.402-405
    • /
    • 2012
  • In this paper, we proposed a novel metamaterial unit cell utilizing an interdigital capacitor(IDC) with non-bianisotropic property. Due to the induced magnetic resonance of an IDC unit cell, exotic effective constitutive parameters can be realized like a split ring resonator(SRR). Furthermore, the proposed unit cell is electrically smaller than a conventional SRR unit cell. The effective parameters retrieved from the transmission responses of waveguide measurement method and simulated results show good agreement.

Development of a new Li-Ion Pack-Battery for improving the electrical properties (전기적인 특성향상을 위한 리튬이온전지팩 개발)

  • Gang, Young-Gu;Kweon, Hyun-Kyu;Seo, Myung-Su;Park, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.90-95
    • /
    • 2009
  • This paper presents a new lithium ion unit-cell and pack battery by using a new formulation ratio of material. The three types of formulation ratio for the unit-cell were used. The life cycle and basic properties of the lithium ion unit-cell$({\Psi}18{\times}65(mm))$ about one of them were acquired by the charge-discharge experiment. The nominal voltage, nominal capacity and cycle life output of the lithium ion unit-cell is respectively 3.7V, 2.4Ah, and above 500cycle. Pack type lithium ion battery has the size of $29.5{\times}73.5{\times}115(mm)$ and the weight of 300g. As the results, the weight and bulk of lithium ion battery used to a safety lamp were decreased to 1/4 and 1/7. In addition, the comparison of the new lithium ion battery and lead storge battery for confirming the effectiveness of the new lithium ion battery have been performed.

  • PDF

Evaluation of In-Plane Effective Properties of Circular-Hole Perforated Sheet (원형 다공 평판의 면내 유효 물성치 계산)

  • 정일섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.181-188
    • /
    • 2004
  • Structural analysis for materials containing regularly spaced in-homogeneities is usually executed by using averaged material properties. For the homogenization process, a unit cell is defined and loaded somehow, and its response is investigated to evaluate the properties. The imposed loading conditions should accord to the behavior of unit cell immersed in the macroscopic structure in order to guarantee the accuracy of the effective properties. Each unit cell shows periodic variation of strain if the material is loaded uniformly, and in this study, direct implementation of this characteristic behavior is attempted on FE models of unit cell. Conventional finite element analysis tool can be used without any modification, and the boundary of unit cell is constrained in a way that the periodicity is satisfied. The proposed method is applicable to skew arrayed in-homogeneity problems. The flexibility matrix relating tonsorial stress and strain components in skewed rectilinear coordinate system is transformed so that the required engineering constants can be evaluated. Effective properties are computed for the materials with square and skew arrayed circular holes, and its accuracy is examined.

Design of a Multiband Frequency Selective Surface

  • Kim, Dong-Ho;Choi, Jae-Ick
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.506-508
    • /
    • 2006
  • A frequency selective surface (FSS), whose unit cell consists of a ternary tree loop loaded with a modified tripole, is proposed to block multiple frequency bands. Target frequency bands correspond to Korean personal communication services, cellular mobile communication, and 2.4 GHz industrial, scientific, and medical bands. Through the adjustment of inter-element and inter-unit cell gaps, and adjustment of the length of elements, we present an FSS design method that makes the precise tuning of multiple resonance frequencies possible. Additionally, to verify the validity of our approach, simulation results obtained from a commercial software tool and experimental data are also presented.

  • PDF

Geometrical Modeling for Hybrid 3-D Braided Composites (하이브리드 삼차원 브레이딩 복합재료의 기하학적 모델링)

  • 한문희;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.67-70
    • /
    • 2003
  • To develop an effective geometric modeling is essential in order that precise mechanical properties and the geometrical properties of the 3-D braided composites can be estimated. RVE(representative volume element) was adopted fur geometrical modeling. RVE consisted of IC(inner unit cell), ISUC(interior surface unit cell) and ESUC(exterior surface unit cell). The whole geometrical model fur hybrid 3-D braided composites was developed.

  • PDF

Modeling of Thermal Conductivity of Carbon Spun Yarn (탄소 방적사의 열전도도 모델링)

  • Cho Young Jun;Sul In Hwan;Kang Tae Jin;Park Jong Kyoo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.186-189
    • /
    • 2004
  • A thermal model of carbon spun yam is presented. The unit cell of spun carbon yam is divided into a number of volume elements and the local material properties have been given to each element. By using Finite Difference Method (FDM), temperature distribution in the unit cell can be obtained. Effective thermal conductivity of the spun carbon yam unit cell is calculated using the temperature distribution and thermal conductivities of local elements.

  • PDF

Monte Carlo Simulation on the Adsorption Properties of Methane in Zeolite L

  • 문성두;Yoshimori Miyano
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.291-295
    • /
    • 1997
  • The adsorption of methane in K+ ion exchanged zeolite L has been studied using grand canonical ensemble Monte Carlo simulation. Average number of molecules per unit cell, number density of molecules in zeolite, distribution of molecules per unit cell, average potential per sorbate molecule, and isosteric heats of adsorption were calculated, and these results were compared with experimental results. The simulation results agreed fairly well with experimental ones. All methane molecules were located in the main channel, and the average potential of sorbate molecule was almost constant regardless of average number of molecules per unit cell and the amounts sorbed in zeolite.

Numerical Simulation of the Elastic Moduli of Cement Paste As a Three Dimensional Unit Cell

  • Park, Ki-Bong
    • Architectural research
    • /
    • v.12 no.2
    • /
    • pp.93-98
    • /
    • 2010
  • This paper describes a numerical method for estimating the elastic moduli of cement paste. The cement paste is modeled as a unit cell which consists of three components: the unhydrated cement grain, the gel, and the capillary pore. In the unit cell, the volume fractions of the constituents are quantified using a single kinetic function calculating the degree of hydration. The elastic moduli of cement paste are calculated from the total displacements of constituents when a uniform pressure is applied to the gel contact area. The cement paste is assumed to be a homogenous isotropic matrix. Numerical simulations were conducted through the finite element analysis of the three-dimensional periodic unit cell. The model predictions are compared with experimental results. The predicted trends are in good agreement with experimental observations. This approach and some of the results might also be relevant for other technical applications.