• 제목/요약/키워드: Unit cell

검색결과 2,070건 처리시간 0.027초

FDTD를 이용한 격자형 페라이트 전파흡수체 특성 해석 (FDTD Analysis of the Absorption Characteristics for Grid Ferrite Electromagnetic Wave Absorber)

  • 이재용;정연춘;명노훈
    • 한국전자파학회논문지
    • /
    • 제9권4호
    • /
    • pp.483-490
    • /
    • 1998
  • The reflectivity of a grid ferrite electromagnetic wave absorber is analyzed using finite difference time domain (FDTD) method, which is usually used in anechoic chambers for EMI / EMS test. The frequency dispersive characteristics of ferrite medium and its boundary condition are modeled using magnetic flux in addition to E- and H-fields. By applying Floquets theorem, FDTD analysis of the grid ferrite absorber with periodic infinite array is simplified as a unit cell problem. The method of homogenization which is mainly utilized in the calculation of absorber reflectivity as a low frequency technique takes only into account volume fraction of the unit cell of the absorber except for the structure of medium geometry. However, the presented method in this paper can analyze the geometry effect of the unit cell with its medium characteristics up to high frequency region.

  • PDF

혼합물반도체에서 단위격자 크기 설정에 따른 비극성 Optical 포논산란에 대한 연구 (Study of the Non-polar Optical Phonon Scattering According to the Size of Unit Cell in an Alloy Semiconductor)

  • 천대명;김태현;전상국
    • 한국전기전자재료학회논문지
    • /
    • 제24권10호
    • /
    • pp.784-789
    • /
    • 2011
  • A linear spring model, where the interactions among atoms are assumed to be isotropic and elastic, is employed for the study of non-polar optical phonon scattering in the valence band of alloy semiconductors. The force equations of n atoms are used in the spring model for the consideration of the random distribution of constituent atoms in an alloy semiconductor. When the number of atoms in a unit cell is assumed to be two based on the experimental result, the optical deformation potent is valid for compound semiconductors as well as alloy semiconductors.

Treatment Outcome for Head and Neck Squamous Cell Carcinoma in a Developing Country: University Malaya Medical Centre, Malaysia from 2003-2010

  • Wong, Yoke Fui;Yusof, Mastura Md;Ishak, Wan Zamaniah Wan;Alip, Adlinda;Phua, Vincent Chee Ee
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2903-2908
    • /
    • 2015
  • Background: Head and neck cancer (HNC) is the eighth most common cancer as estimated from worldwide data. The incidence of HNC in Peninsular Malaysia was reported as 8.5 per 100,000 population. This study was aimed to determine the treatment outcomes for HNC patients treated in the Oncology Unit of University Malaya Medical Centre (UMMC). Materials and Methods: All newly diagnosed patients with squamous cell carcinoma of head and neck (HNSCC) referred for treatment to the Oncology Unit at UMMC from 2003-2010 were retrospectively analyzed. Treatment outcomes were 5-year overall survival (OS), cause specific survival (CSS), loco-regional control (LRC) and radiotherapy (RT) related side effects. Kaplan-Meier and log rank analyses were used to determine survival outcomes, stratified according to American Joint Committee on Cancer (AJCC) stage. Results: A total of 130 cases were analysed. Most cases (81.5%) were at late stage (AJCC III-IVB) at presentation. The 5-year OS for the whole study population was 34.4% with a median follow up of 24 months. The 5-year OS according to AJCC stage was 100%, 48.2%, 41.4% and 22.0% for stage I, II, III and IVA-B, respectively. The 5-year overall CSS and LCR were 45.4% and 55.4%, respectively. Late effects of RT were documented in 41.4% of patients. The most common late effect was xerostomia. Conclusions: The treatment outcome of HNSCC at our centre is lagging behind those of developed nations. Efforts to increase the number of patients presenting in earlier stages, increase in the use of combined modality treatment, especially concurrent chemoradiotherapy and implementation of intensity modulated radiotherapy, may lead to better outcomes for our HNC patients.

당량비 조건에 따른 PEM단위 연료전지의 과도 응답 특성 및 공기극 플러딩 연구 (Transient response of unit PEMFC with the visualization study of cathode flooding under different stoichiometries)

  • 조준현;김한상;민경덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.539-542
    • /
    • 2007
  • The transient response of PEMFC (proton exchange membrane fuel cell) is important criteria in the application of PEM fuel cell to real automotive system. In this work, using a transparent unit PEM fuel cell, the transient response and cathode flooding during load change are investigated. The cell voltage is acquired according to the current density change($0.3Acm^2$ to $0.6A/cm^2$) under various stoichiometry conditions and different flooding intensities, Also the cathode gas channel images are obtained by CCD imaging system simultaneously. The different level of undershoots appeared at the moment of load changes under different cathode stoichiometries and flooding intensities. The correlation of the dynamic behavior with stoichiometry and cathode flooding is induced from the results of these experiments.

  • PDF

연료전지 자동차용 흡기 소음기의 설계 변수 최적화에 관한 연구 (Optimization of the Multi-chamber Perforated Muffler for the Air Processing Unit of the Fuel Cell Electric Vehicle)

  • 김의열;이상권
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.736-745
    • /
    • 2009
  • Fuel cells convert a fuel together with oxygen in a highly efficient electrochemical reaction to electricity and water. Since the electrochemical reaction in the fuel cell stack dose not generate any noise, Fuel cell systems are expected to operated much quieter than combustion engines. However, the tonal noise and the broad band noise caused by a centrifugal compressor and an electric motor cause which is required to feed the ambient air to the cathode of the fuel cell stack with high pressure. In this study, the multi-camber perforated muffler is used to reduce noise. We propose optimized muffler model using an axiomatic design method that optimizes the parameters of perforated muffler while keeping the volume of muffler minimized.

연료전지기반 공동주택 에너지시스템 분석모델에 관한 기초연구 (A Preliminary Study on the Analysis Model of Energy System based on Fuel Cell for Apartment Houses)

  • 이홍철;황인주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.396-401
    • /
    • 2003
  • In the present study, preliminary investigation were carried out by analysis of energy system(heat and electricity) based on phosphoric acid fuel-cell of 50 kW for eco-apartment houses. Analysis model were consisted of fuel cell energy system, secondary energy unit and residential building of 5 stories with 20 and 40 households. And the investigation results reviewed under load pattern of heat and electric power of the apartment houses. The results showed mismatch between the needed heat load pattern and output of fuel cell energy system. The mismatch rate were assessed about 10-180% of heat load for apartment houses with season. We found that secondary energy unit are needed in order to supply insufficient heat.

  • PDF

Multi-physics Unit Model of Fuel cell for Railway Vehicle Propulsion Systems

  • Abbas, Mazhar;Cho, Inho;Kim, Jonghoon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.356-357
    • /
    • 2018
  • Fuel-cell powered Railway Vehicle Propulsion Systems (RVPSs) are highly desirable due to environment friendly characteristics, and high efficiency of fuel cell (FC). Among various types, the faster start-up and optimality to frequent starts and stops of Polymer electrolyte membrane fuel cell (PEMFC) makes it well suited for propulsion systems. A comprehensive model of PEMFC with reflection of multi-physics behavior required to identify and validate its performance in real RVPSs. Thus this paper will model and simulate the PEMFC unit cell model: a detailed reflection of governing laws and account of dynamic conditions.

  • PDF

Preparation and Comparative Test of Polypyrrole Electrodes for Direct Methanol Fuel Cell

  • Park, Jae-Chan;Kim, Jeong-Soo;Jung, Doo-Hwan
    • Macromolecular Research
    • /
    • 제10권4호
    • /
    • pp.181-186
    • /
    • 2002
  • The displacement of carbon black to polypyrrole as a catalyst supporter in the fuel electrode of a direct methanol fuel cell was investigated. Polypyrrole was obtained as a black powder by the chemical polymerization of pyrrole with three different oxidants. The synthesized polypyrroles were pasted on carbon paper and transformed to the fuel electrodes with electrochemically deposited platinum. The prepared fuel electrode was assembled and mounted in a unit cell using a membrane and cathodic electrode film. In comparison with the carbon black fuel electrode, the performance of the unit cell was analyzed in relation to the state of the catalyst, the type of oxidant, and the morphology of the polypyrrole powder.

용융탄산염형 연료전지의 단위전지 제작과 특성 (Characteristics and unit cell fabrication of molten carbonate fuel cell)

  • 엄승욱;김귀열
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권6호
    • /
    • pp.768-773
    • /
    • 1995
  • We describe a manufacturing method and characteristics on components of molten carbonate fuel cell. Cr, Al, AI$_{2}$O$_{3}$, Co, MgO powder were mixed with Ni powder for anode components and NiO was used for cathode electrode. The electrolyte plate consisted of LiAIO$_{2}$ and carbonate (Li$_{2}$CO$_{3}$/K$_{2}$CO$_{3}$=62/38) and these three were manufactured by doctor-blade method. As a result, open circuit voltage was 1.05[VI at Ni-10Cr anode and porosity was above 60[%].

  • PDF

4D Lookup Table Interpolating을 이용한 단위 전지 방전 시험 기반 열전지 성능 예측 (Performance Estimation Based on 4D Lookup Table Interpolating and Unit Cell Discharge Tests for Thermal Battery)

  • 박병준;김지연;하상현;조장현
    • 한국전기전자재료학회논문지
    • /
    • 제30권6호
    • /
    • pp.393-400
    • /
    • 2017
  • For comparison to the Li-ion battery, evaluating a thermal battery must consider additional variables. The first one is the temperature difference between the battery and its unit cell. Thermal batteries and their unit cells have a temperature difference that is caused by the thermal battery activation mechanism and its shape. The second variable is the electrochemical reaction steps. Most Li-ion batteries have a constant electrochemical reaction at the electrode, and battery voltage is affected when the concentration of Li ions is changed. However, a thermal battery has several steps in its electrochemical reaction, and each step has a different potential. In this study, we used unit cell discharge tests based on interpolating a 4D lookup table to estimate the performance of a thermal battery. From the test results, we derived an estimation algorithm by interpolating the table, which is queried from specified profile groups. As a result, we found less than a 5 percent difference between estimation and experiment at the 1.3 V cut-off time.