• Title/Summary/Keyword: Unit Watershed

Search Result 325, Processing Time 0.024 seconds

A Derivation of the Representative Unit Hydrograph from Multiperiod Complex Storm by Linear Programming (선형계획법(線型計劃法)에 의한 대표단위도(代表單位圖) 유도(誘導))

  • Kwon, Oh Hun;Ryu, Tae Sang;Yoo, Ju Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.173-182
    • /
    • 1993
  • This paper presents an algorithm to derive the representative unit hydrograph for the real environment of a watershed. For a given watershed, the conventional methods give several different unit hydrographs by storm events. In this study the LP model is somewhat modified based on the previous study by Mays et also as follows: the objective function is designed to minimize the sum of weighted residuals. An additional constraint of moving average is added to prevent the unit hydrograph from the occurence of oscillation which was not active in Mays's paper. Configuration of rainfall matrix was improved to reduce its dimension in accordance with Diskin's review point. In spite of the superiority of LP approach in terms of representativeness, all the methods were very sensitive to the validity of baseflow separation and rainfall-loss. Several methods of the separations for rainfall excesses and direct runoffs were applied and no preferred methods were identified. This is the matter of judgement considering catchment and rainfall characteristics. This algorithm was applied to a real watershed of the Wi stream in the Nak-dong river. Compared with the IHP results by conventional methods, this optimized representative unit hydrograph demonstrated relatively smaller and shorter values in terms of the peak discharge and the basin lag respectively, and the oscillation of its falling limb successfully eliminated owing to the additional constraints of moving averages.

  • PDF

Assessment of water use vulnerability in the unit watersheds using TOPSIS approach with subjective and objective weights (주관적·객관적 가중치를 활용한 TOPSIS 기반 단위유역별 물이용 취약성 평가)

  • Park, Hye Sun;Kim, Jeong Bin;Um, Myoung-Jin;Kim, Yeonjoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.685-692
    • /
    • 2016
  • This study aimed to develop the indicator-based approach to assess water use vulnerability in watersheds and applied to the unit watershed within the Han River watershed. Vulnerability indices were comprised of three sub-components (exposure, sensitivity, adaptive capacity) with respect to water use. The indicators were made up of 16 water use indicators. Then we estimated vulnerability indices using the Technique for Order of Preference by Similarity to Ideal Solution approach (TOPSIS). We collected environmental and socio-economic data from national statistics database, and used them for simulated results by the Soil and Water Assessment Tool (SWAT) model. For estimating the weighted values for each indicator, expert surveys for subjective weight and data-based Shannon's entropy method for objective weight were utilized. With comparing the vulnerability ranks and analyzing rank correlation between two methods, we evaluated the vulnerabilities for the Han River watershed. For water use, vulnerable watersheds showed high water use and the water leakage ratio. The indices from both weighting methods showed similar spatial distribution in general. Such results suggests that the approach to consider different weighting methods would be important for reliably assessing the water use vulnerability in watersheds.

Development of Wetershed Runoff Index for Major Control Points of Geum River Basin Using RRFS (RRFS에 의한 금강수계의 주요지점별 유역유출지표 개발)

  • Lee, Hyson-Gue;Hwang, Man-Ha;Koh, Ick-Hwan;Maeng, Seung-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.3
    • /
    • pp.140-151
    • /
    • 2007
  • In this study, we attempted to develop a watershed runoff index subject to main control points by dividing the Geum River basin into 14 sub-basins. The Yongdam multipurpose dam Daecheong multipurpose dam and Gongju gage station were selected to serve as the main control points of the Geum River basin, and the observed flow of each control point was calculated by the discharge rating curve, whereas the simulated flow was estimated using the Rainfall Runoff Forecasting System (RRFS), user-interfaced software developed by the Korea Water Corporation, based on the Streamflow Synthesis and Reservoir Regulation (SSARR) model developed by the US Army Corps of Engineers. This study consisted of the daily unit observed flow and the simulated flow of the accumulated moving average flow by daily, 5-days, 10-days, monthly, quarterly and annually, and normal monthly/annually flow. We also performed flow duration analysis for each of the accumulated moving average and the normal monthly/annually flows by unit period, and abundant flow, ordinary flow, low flow and drought flow estimated by each flow duration analysis were utilized as watershed runoff index by main control points. Further, as we determined the current flow by unit period and the normal monthly/annually flow through the drought and flood flow analysis subject to each flow we were able to develop the watershed runoff index in a system that can be used to determine the abundance and scarcity of the flow at the corresponding point.

Determination of EMC and Unit Loading of Rainfall Runoff from Forestry-Crops Field (산림과 밭 지역 강우 유출수의 EMC 및 원단위 산정)

  • Won, Chul-hee;Choi, Yong-hun;Seo, Ji-yeon;Kim, Ki-cheol;Shin, Min-hwan;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.615-623
    • /
    • 2009
  • The research of the determination of event mean concentration (EMC) was focussed combined sewer overflows and highway runoff in korea. But those of non-urban areas are few. In this study, EMC and unit loading on land use types in Nogok watershed were estimated by runoff loading of non-point source (NPS) on non-urban area. Two monitoring sites were equipped with an automatic velocity meter, flow meter, and water sampler. Monitoring was conducted at two monitering site during the rainy season. The results show that the EMC ranges in forest land use are 1.3~2.6 mg/L for BOD, 2.0~16.1 mg/L for SS, 0.1~2.1 mg/L for TN, and 0.12~0.49 mg/L for TP. The unit loading of NPS in this study was difficult to compare directly with that used conventionally because of the difference of field investigation. In near future, it needs to conduct more systematic and long-term research about NPS within the watershed. The results of this research can be used to estimate the total pollution load management system (TPLMS) program in korea.

Hydrological Drought Assessment of Agricultural Reservoirs based on SWSI in Geum River Basin (SWSI에 기반한 금강권역 농업용 저수지의 수문학적 가뭄평가)

  • Ahn, So-Ra;Park, Jong-Yoon;Jung, In-Kyun;Na, Sang-Jin;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.35-49
    • /
    • 2009
  • This study proposes a method to evaluate agricultural reservoirs drought by modifying SWSI (Surface Water Supply Index). The method was applied to Geum river basin and the results were represented as spatially distributed information. The SWSI evaluates hydrological drought of watershed unit by selectively applying one or all of the components of snowpack, precipitation, streamflow and reservoir storage. South Korea has 22 % of agricultural area, and rice paddy covers 64 % among them. Usually paddy fields scattered along stream are irrigated by so many small agricultural reservoirs. It is difficult to evaluate agriculture drought by the little information and large number of agricultural reservoirs. In this study, seven agricultural reservoirs over 10 million ton storage capacity were selected in Geum river basin, and the SWSI was evaluated for both upstream and downstream of the reservoirs using 16 years data (1991-2006). Using the results, multiple regression analyses with precipitation and reservoir storage as variables were conducted and the equations were applied to other watersheds. The spatial results by applying regression equations showed that the severe and moderate drought conditions of July and September in 1994, June in 1995, and May in 2001 were well expressed by the watershed unit.

Rainfall Effects on Discharged Pollution Load in Unit Watershed Area for the Management of TMDLs (수질오염총량관리 배출부하량에 대한 강우영향 분석연구)

  • Park, Jun Dae;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.648-653
    • /
    • 2010
  • Discharged pollution load for the management of Total Maximum Daily Loads (TMDLs) is calculated on the basis of rainfall data for reference year. Rainfall has an influence on discharged pollution load in unit watershed with combined sewer system. This study reviewed the status of discharged pollution load and rainfall conditions. We also investigated rainfall effects on discharged pollution load by analyzing change of the load in accordance with increase of rainfall. The change ratio of discharged pollution load was 18.6% while inflow load only 5.8% for 5 years from 2004 to 2008 in Daejeon district. The greatest rainfall and rain days were over 2 times than the least during the period. This change in rainfall could have great effect on discharged pollution load. The analysis showed that discharged pollution load increased 2.1 times in case rainfall increased 2 times and 1.2 times in case rain days increased 2 times. Rainfall effects, therefore, should be considered to make resonable evaluation of discharged pollution load in the assessment of annual performances.

Improvement and Application of Total Maximum Daily Load Management System of Korea: 1. Calculation of Total Amount of Pollutant Load in the Anyangcheon Watershed (우리나라 오염총량관리제도의 개선 및 적용: 1. 안양천 유역의 오염부하량 산정)

  • Kim, Kyung-Tae;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil Seong;Seong, Jin-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.972-978
    • /
    • 2009
  • This study modifies the present total maximum daily load (TMDL) system of Ministry of Environment and applies to the Anyangcheon watershed. Hydrologic Simulation Program-FORTRAN (HSPF) model is used to simulate both runoff and non-point source pollution, simultaneously, instead of QUAL2E. The drought flow (355th daily flow) is proposed for the target water quantity since it is easier to satisfy low flow (275th daily flow) for the target water quality than drought flow. The increase of discharge is more than the increase of pollutant load except for the period under low flow. The measured unit loads for non-point source are used to consider the regional runoff characteristics. The measured water quantity and quality data are used since the ministry of environment supports only water quality. This analysis results show some reasons for the improvement of the present TMDL system of Korea.

Analyzing Runoff Characteristics of Nonpoint Sources During Rainfall in Urban Area - Focussing on upstream of Hongjechun watershed (강우시 도시지역 비점오염원 유출특성 분석 - 홍제천 상류 유역을 중심으로 -)

  • Hwang, Byung-Gi
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.2
    • /
    • pp.63-73
    • /
    • 2005
  • This study was performed to characterize stormwater runoff of pollution material from nonpoint sources during rainfall in drainage basins of Hongjechun watershed, and to suggest management methods to control the first flush of nonpoint sources. We conducted 4 times of field surveys including 3 times of wet period and 1 times of dry period for 5 stations, which consist of 3 stations in main stream of Hongjechun and 1 station in tributaries of Sinyoungchun and Gukichun, respectively. The variation of pollutant concentrations in terms of BOD, COD, SS and TP was large depending on the flow rate of stormwater, while a little change of TN concentration was investigated. Depending on the rainfall event, the difference of flowrates, and runoff loadings was large, while the difference of those for dry wether period was not noticeable for various sub-basins. In the results of unit load calculation, the range of 153-277 kg/ha/yr for BOD, 222-422 kg/ha/yr for COD, 264-432 kg/ha/yr for SS, 40-70kg/ha/yr for TN, and 13-25 kg/ha/yr for TP was obtained for Hongjechun, Sinyoungchun, and Gukichun sub-basins. Compared with the previous studies, the result of this study was founded to be acceptable.

A Proposal of Unit Hydrograph Using Statistical Analysis in Oedo Stream, Jeju (통계적 기법을 적용한 외도천의 단위유량도 제안)

  • Lee, Jun-Ho;Yang, Sung-Kee;Jung, Woo-Yul
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.393-401
    • /
    • 2015
  • Rainfall-runoff model of Jeju Oedo Stream was used to compute the optimal unit hydrograph by HEC-HMS model that reflecting on watershed characteristics. Each rainfall event was comparatively analyzed with the actual flow measurement using Clark, Snyder and SCS synthetic methods for derived unit hydrograph. Subsequently, the null hypothesis was established as p-value for peak flow and peak time of each unit hydrograph by one-way ANOVA(Analysis of variance) was larger than significance level of 0.05. There was no significant difference in peak flow and peak time between different methods of unit hydrograph. As a result of comparing error rate with actual flow measurement data, Clark synthetic unit graph best reflected in Oedo Stream as compared to other methods, and error rate of Clark unit hydrograph was 0.02~1.93% and error rate at peak time was 0~2.74%.

Principles of Eco-Village Planning Applying Landscape Ecological Indices (경관생태지표를 활용한 생태마을계획 원리)

  • Whang Bo-Chul;Lee Myung-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.4 s.111
    • /
    • pp.71-78
    • /
    • 2005
  • The purpose of this study is the practical application of landscape ecological indices to establishment of eco-village planning methodology. Planning an eco-village has to be carried out in the boundary of a small watershed that is defined by homogeneous ecological character. Because the small watershed is a landscape unit it can have unique ecological character. On this viewpoint, the spatial structure is analyzed by the ecological attributes of form, distribution arrangement and composition of the sub-landscape units. Among all of the sub-landscape units, a green tract of land is the main subject of the analyzing entity. Woodland or forest as a green tract of land is a source of biological species and materials. Therefore the ecological attributes of green patches are especially analyzed by landscape ecological indices. The selected landscape ecological indices are elongation, lobes, interior area ratio, convolution of perimeter and proximity of the green patches. These indices represent the state of ecological conditions and they will be the evaluation factors of the landscape ecological planning. These frameworks for landscape ecological planning apply to Obok and Ganggeum villages in Wanju-gun, Korea. A proposed planning was evaluated by the selected landscape ecological indices. Among the selected landscape ecological indices of green patches, perimeter convolution and proximity were increased. It means that the ecological condition of peen paches will be mon sound and green areas of the village will be expanded naturally. In addition to this connectivities among green patches will also be improved.