• Title/Summary/Keyword: Unit Watershed

검색결과 325건 처리시간 0.034초

비모수 경향분석법 적용을 통한 금강수계 총량관리 단위유역의 수질변화 연구 (A Study on the Water Quality Changes of TMDL Unit Watershed in Guem River Basin Using a Nonparametric Trend Analysis)

  • 김은정;김용석;류덕희;류지철;박배경
    • 한국물환경학회지
    • /
    • 제30권2호
    • /
    • pp.148-158
    • /
    • 2014
  • In order to assess the effect of TMDLs management and improve that in the future, it is necessary to analyze long-term changes in water quality during management period. Therefore, long term trend analysis of BOD was performed on thirty monitoring stations in Geum River TMDL unit watersheds. Nonparametric trend analysis method was used for analysis as the water quality data are generally not in normal distribution. The monthly median values of BOD during 2004~2010 were analyzed by Seasonal Mann-Kendall test and LOWESS(LOcally WEighted Scatter plot Smoother). And the effect of Total Maximum Daily Loads(TMDLs) management on water quality changes at each unit watershed was analyzed with the result of trend analysis. The Seasonal Mann-Kendall test results showed that BOD concentrations had the downward trend at 10 unit watersheds, upward trend at 4 unit watersheds and no significant trend at 16 unit watersheds. And the LOWESS analysis showed that BOD concentration began to decrease after mid-2009 at almost all of unit watersheds having no trend in implementation plan watershed. It was estimated that TMDLs improved water quality in Geum River water system and the improvement of water quality was made mainly in implementation plan unit watershed and tributaries.

수질오염총량관리 단위유역의 유량변화 특성분석 - 금강수계를 대상으로 - (Characterization on the Variation of Streamflow at the Unit Watershed for the Management of Total Maximum Daily Loads - in Guem River Basin -)

  • 박준대;오승영;최옥연
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.914-925
    • /
    • 2011
  • The variation of streamflow is regarded as one of the most influential factors on the fluctuation of water quality in the stream. The characteristics of the variation should be taken into account in the plans for the management of Total Maximum Daily Loads (TMDLs). This study analysed and characterized spatial distribution and temporal variation of streamflow at each unit watershed in Guem-river basin. For the analysis of the distribution of streamflow, the type and the extent of the distribution were investigated for the unit watershed. For the analysis of the variation, short and long term changes of streamflow were examined. The result showed that most of the distributions were not log-normalized and the extent of variation tends to be greater at the unit watershed placed on the tributaries in the basin. A kind of margin could be granted to the unit watershed involving high variations so as to establish the water quality goal and load allotment more reasonably and effectively in view of whole waterbody.

복합형 유역모델 STREAM의 개발(II): 모델의 시험 적용 (Development of a Hybrid Watershed Model STREAM: Test Application of the Model)

  • 조홍래;정의상;구본경
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.507-522
    • /
    • 2015
  • In this study, some of the model verification results of STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model), a newly-developed hybrid watershed model, are presented for the runoff processes of nonpoint source pollution. For verification study of STREAM, the model was applied to a test watershed and a sensitivity analysis was also carried out for selected parameters. STREAM was applied to the Mankyung River Watershed to review the applicability of the model in the course of model calibration and validation against the stream flow discharge, suspended sediment discharge and some water quality items (TOC, TN, TP) measured at the watershed outlet. The model setup, simulation and data I/O modules worked as designed and both of the calibration and validation results showed good agreement between the simulated and the measured data sets: NSE over 0.7 and $R^2$ greater than 0.8. The simulation results also include the spatial distribution of runoff processes and watershed mass balance at the watershed scale. Additionally, the irrigation process of the model was examined in detail at reservoirs and paddy fields.

농업용 저수지의 소수력 개발을 위한 경제성 분석 (Economic Feasibility Analysis for Development of Small Hydropower Using Agricultural Reservoirs)

  • 우재열;김진수;장훈;김영현
    • 한국농공학회논문집
    • /
    • 제53권2호
    • /
    • pp.53-60
    • /
    • 2011
  • This study was conducted to investigate the effect of hydropower factors (watershed, gross head), operation ratio and unit electricity cost on the benefit-cost ratio (B/C ratio) of small hydropower using agricultural reservoirs. The equation of B/C ratio was expressed as a function of watershed area, gross head, operation ratio and unit electricity cost. The benefit increased with watershed area, gross head and unit electricity cost, while the cost increased with watershed area and gross head but decreased with operation ratio. The B/C ratio increased with watershed area, gross head, operation ratio and unit electricity cost. While the effect of gross head on the B/C ratio decreased with watershed area, the effect of operation ratio and unit electricity cost on the B/C ratio increased with watershed area. The operation ratio is an important factor to affect the B/C ratio and therefore we need to develop hydropower for the heightened dams to expect high operation ratio due to continuous water release. The unit electricity cost is also an important factor to affect the B/C ratio and the B/C ratio was always below 1 unless unit electricity cost is over 60 Won/kWh under given conditions. The reservoirs with economic feasibility for small hydropower development were three in 21 when the equation of B/C ratio was appled to the study reservoirs. The results can be used to choose the appropriate reservoir with economic feasibility for development of small hydropower.

미계측 소하천수계의 합성단위도 유도 (Derivation of the Synthetic Unit Hydrograph at Ungaged Small Watershed)

  • 안상진;이억한
    • 물과 미래
    • /
    • 제19권2호
    • /
    • pp.157-166
    • /
    • 1986
  • 미측측 소하천 유역에 적용할만한 합성단위도를 찾아내기 위하여 대표유역의 관측자료로부터 각 소하천의 실측단위도를 유도하였다. 소하천 유역의 특성인자와 단위도의 특성치를 분석하여 Snyder, S.C.S, Nash, Clark에서 이용되는 식을 유도하였다. 이들 식을 이용하여 대표유역의 유역특성치로서 각 방법에 의한 합성단위도를 유도하고 이들 합성단위도와 실측단위도를 비교 분석한 결과 다음과 같은 특성을 발견하였다. Snyder 방법에 의한 첨두유량과 근사하였으나 첨두유량의 25,50,75%되는 단위도의 좌표만으로는 단위도의 형을 결정하기엔 미흡함이 남아있다. Clark 방법에 의하여 합성단위도를 정확하게 유도하기 위하여 그 유역의 시간-면적도의 기저장과 등유달시간면적을 정확하게 구할 수 있는 방법이 모색되어야 한다고 생각한다. Nash 방법에 의한 합성단위도의 첨두유량과 기저시간은 저장상수와 Gamma 함수인자만의 함수이기 때문에 정확한 저장상수와 Gamma 함수인자의 결정이 선행되어야만 신빙성있고 정도가 높은 단위도 유도가 가능하리라 판단된다. S.C.S 방법에서 첨두유량은 유역면적에 비례하고 첨두유량 발성시간에 반비례하기 때문에 첨두유량 발생이 빠른 소유역에서는 다소 큰 첨두유량 값을 갖음을 알았다.

  • PDF

복합형 유역모델 STREAM의 개발(I): 모델 구조 및 이론 (Development of a Hybrid Watershed Model STREAM: Model Structures and Theories)

  • 조홍래;정의상;구본경
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.491-506
    • /
    • 2015
  • Distributed models represent watersheds using a network of numerous, uniform calculation units to provide spatially detailed and consistent evaluations across the watershed. However, these models have a disadvantage in general requiring a high computing cost. Semi-distributed models, on the other hand, delineate watersheds using a simplified network of non-uniform calculation units requiring a much lower computing cost than distributed models. Employing a simplified network of non-uniform units, however, semi-distributed models cannot but have limitations in spatially-consistent simulations of hydrogeochemical processes and are often not favoured for such a task as identifying critical source areas within a watershed. Aiming to overcome these shortcomings of both groups of models, a hybrid watershed model STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model) was developed in this study. Like a distributed model, STREAM divides a watershed into square grid cells of a same size each of which may have a different set of hydrogeochemical parameters reflecting the spatial heterogeneity. Like many semi-distributed models, STREAM groups individual cells of similar hydrogeochemical properties into representative cells for which real computations of the model are carried out. With this hybrid structure, STREAM requires a relatively small computational cost although it still keeps the critical advantage of distributed models.

국내 수문특성에 적합한 합성단위도의 개발 (The Development of Synthetic Unit Hydrograph Suitable to the Hydrologic Characteristics in Korea)

  • 정성원;문장원
    • 한국수자원학회논문집
    • /
    • 제34권6호
    • /
    • pp.627-640
    • /
    • 2001
  • 일반적으로 합성단위도법은 강우-유출기록이 없는 유역의 설계홍수량 산정을 위해 제안되었다. 그러나 국내에서는 아직까지 자료의 부족 등으로 외국에서 개발된 각종 유출모의 모형이 주로 이용되고 있다. 따라서 그 동안 축적된 국내의 강우-유출 자료를 이용하여 국내의 수문특성엥 적합한 유출모형의 개발이 절실한 상황이다. 이를 위해 본 연구에서는 설마천 유역의 2개 지점과 IHP 대표유역인 평강창, 보청천, 위천의 17개 지점에 대해 그 동안 축 (중략) 특성 관련 연구결과를 종합하여 새로운 합성단위도법을 개발하였다. 개발된 합성단위도는 유역특성인자와 단위도치식 치(첨두시간, 첨두유량)와의 다중회귀분석을 통해 유역면적-유로연장-유로경사의 3가지 변수로 구성되는 효 (중략) 전국을 있었다. 따라서 우리나라에서는 아직까지 수계별로 합성단위도를 분리하여 제시하기는 무리라고 보여지 (중략)

  • PDF

부하지속곡선(Load Duration Curve; LDC)을 이용한 한강수계 오염총량관리 목표수질 평가방법 적용 방안 (Application of the Load Duration Curve (LDC) to Evaluate the Achievement Rate of Target Water Quality in the Han-River Watersheds)

  • 김은경;류지철;김홍태;김용석;신동석
    • 한국물환경학회지
    • /
    • 제31권6호
    • /
    • pp.732-738
    • /
    • 2015
  • Water quality in four major river basin in Korea was managed with Total Maximum Daily Load (TMDL) System. The unit watershed in TMDL system has been evaluated with Target Water Quality (TWQ) assessment using average water quality, without considering its volume of water quantity. As results, although unit watershed are obtained its TWQ, its allocated loads were not satisfied and vice versa. To solve these problems, a number of TWQ assessments with using Load Duration Curve (LDC) have been studied at other watersheds. The purpose of this study was to evaluate achievement of TWQ with Flow Duration Curve (FDC) and Load Duration Curve(LDC) at 26 unit watersheds in Han river basin. The results showed that achievement rates in TWQ assessment with current method and with LDC were 50~56 % and 69~73%, respectively. Because of increasing about 20% of achievement rates with using LDC, the number of exceeded unit watershed at Han river Basin was decreased about 4~6 unit watersheds.

미계측 유역의 유출량 산정을 위한 합성단위도 개발 (Development of Synthetic Unit Hydrograph for Estimation of Runoff in Ungauged Watershed)

  • 최용준;김주철;정동국
    • 한국물환경학회지
    • /
    • 제26권3호
    • /
    • pp.532-539
    • /
    • 2010
  • The synthetic unit hydrograph is developed and verified using Nash model and characteristic velocities considering geomorphological dispersion in this present study. Application watersheds are selected 5 subwatersheds of Bocheong basin. The mean and variance of hillslope and stream path length are estimated in each watershed with GIS. Characteristic velocities are calculated using estimated path lengths and moment characteristics of rainfall-runoff data. Characteristic velocities of random devised 7 ungauged watersheds are estimated through regional analysis of chracteristic velocities in guaged watershed. And Nash model parameters and IUH are derived using characteristic velocities and path length in the gauged and ungauged watershed. The result to compare of IUH about gauged watershed and random devised ungauged watershed in application watershed presents coherently hydrologic response characteristics that peak discharge is reduced and peak time is extended. In conclusion, Developed synthetic unit hydrograph in this study expects that it is useful method to estimate runoff discharge for managing of water pollution in ungauged watershed.

수질오염총량관리 단위유역별 오염물질 배출부하량 특성분석 - 금강수계를 대상으로 (Characterization on the Pollution Discharge Load at the Unit Watershed for the Management of Total Maximum Daily Loads - in Guem River Basin)

  • 박준대;최옥연;오승영
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.786-795
    • /
    • 2012
  • Water quality management should be focused on the pollution concentrated area so that the improvement of water quality can be achieved effectively for the management of Total Maximum Daily Loads (TMDLs). It is necessary to consider discharge characteristics in the TMDL plan. This study analysed discharge characteristics such as pollution generation and discharge load density, and reduction potential by each unit watershed, and categorized the unit watershed into four groups according to its discharge load characteristics. This analysis can be used as helpful information for the prioritization of pollution reduction area and selection of pollution reduction measures in the development of TMDL plans.