• Title/Summary/Keyword: Unit Structure Matrix

Search Result 102, Processing Time 0.025 seconds

Structure of Hydroxy-bisbenzoyloxy-allyloxycalix[4]arene (Hydroxy-bisbenzoyloxy-allyloxycalix[4]arene의 구조)

  • Lee, Bo-Hyeong;Jo, Seon-Hui;Park, Yeong-Ja
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.111-118
    • /
    • 1997
  • The structrue of hydroxy-bisbenzoyloxy-allyloxycalix[4]arene (C45H36O6) has been determined by X-ray crystallography. The crystals are monoclinic, space group P21, unit cell constants a=11.045(3), b=33.545(2) c=10.319(4)Å, β=113.86(2)˚, Z=4, V=3496.0(1.8) Å3, DC=1.28 gcm-3. The intensity data were collected on an Enraf-Noninus CAD-4 Diffractometer with a graphite monochromated Mo-Kα radiation. The structure was solved by direct method and refined by full-matrix least-squares calculations to a final R value of 0.076 for 2945 observed reflections. Two independent enantiomeric molecules are crystallized in a 1:1 racemate mixture. They have the flattened cone conformation with the flattening hydroxy1 pheny1 rings. There is an intramolecular hydrogen bond in both molecules.

  • PDF

A Study on the Beam Permutation Technique for Frame Type Offshore Structures (프레임형 해양구조물의 보치환 기법에 관한 연구)

  • Piao Chun-Jun;Park, Han-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.23-28
    • /
    • 1999
  • For offshore structures, dynamic analysis becomes increasingly important as water depth increases and structural configuration becomes more slender. In the case of dynamic analysis of frame structures, much computer time and high cost are required due to many degrees of freedom, In this paper, a new technique of permutating a segment of frame structure to a beam is developed, which is called here Beam Permutation Technique. The technique is based on definition of stiffness matrix of the beam which is obtained by defining the actions(or forces) required to obtain unit translation or rotation for each degree of freedom wiht al other degree of freedom restrained to zero displacement or rotation. In the technique, an assumption is made that relative positions of nodes in the ends of the segment are not variable, The technique can significantly reduce the degrees of freedom of frame structures and thus the computiong time in dynamic analysis. The natural frequencies and static displacements of the permutated beam are obtained and compared to those of ANSYS with a good agreement.

  • PDF

Analysis of Intellectual Structure of Subject Specialty through Author Co-citation (전문영역의 주제구조분석 - 저자공인용에 근거하여 -)

  • Cho Myeung-Hee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.22
    • /
    • pp.331-360
    • /
    • 1992
  • This research presents author co-citation analysis of the subject area in the humanities - Korean history. Three approaches to multivariate analyses were used to display the inter-author relationships in the similarity matrix. Data on co-citation of sixty seven authors for the period of 1980­1989 were extracted from the database constructed by author. The author's name, here refers to a body of writings by a person, is the unit of analysis. The data were subjected to non-metric multidimensional scaling program create two-dimensional map of authors. Authors with similarity are clustered using hierarchical agglomerative procedure and it is found that five clusters in Korean history represent primarily research specializations. Author map of Korean history reveals the first dimension corresponding to subject orientation of authors and the second dimension corresponds to research method or research style. In factor analysis, each factor reflects research specialty made up of authors, and factor locadings demonstrate the breadth or concentration of sixty seven authors' scholarly contributions on Korean history. It is demonstrated that the· specific methodology employed by this research, author co-citation analysis, is useful to represent the intellectual structure of Korean history.

  • PDF

The Crystal Structure of Cholesteryl Aniline

  • Park, Young-Ja;Kim, Sang-Soo;Lee, Seung-Bun
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.427-430
    • /
    • 1990
  • Cholesteryl aniline ($C_{33}H_{51}N$) is monoclinic, space group $P2_1$, with a = 9.020(3), b = 6.000(1), c = 27.130(9)${\AA},\;{\beta} = 98.22(2)^{\circ}$, Z = 2, Dc = 1.06 g/cm$^3$ and Dm = 1.04 g/cm$^3$. A diffraction data set was collected with Mo-$K_{\alpha}$ radiation (${\lambda} = 0.7107 {\AA}$) on a diffractometer with a graphite monochromator to a maximum 2${\theta}$ value of 50$^{\circ}$, by the ${\omega}-2{\theta}$ scan technique. The coordinates of the non-hydrogen atoms and their anisotropic temperature factors were refined by full-matrix least-squares methods to final R of 0.058. In cholesteryl group, bond distances were normal except in tail part, where high thermal vibration resulted in apparent shortening of the C-C distances. The crystal structure consists of bilayers of thickness $d_{001} = 27.13 {\AA}$, in each of which there is the tail to tail arrangement of molecules aligned in the unit cell with their long axes approximately parallel to the [104] axis. The two halves of the double layer are related to each other by the screw axis.

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.

Crystal Structure of an Acetylene Sorption Complex of Vacuum Dehydrated Fully Cadmiumfiil-Exchanged Zeolite A (완전히 카드뮴 이온으로 교환된 제올라이트 A를 진공 탈수한 후 아세틸렌 기체로 흡착한 결정구조)

  • Koh, Kwang-Nak;Han, Young-Wook;Kim, Yang
    • Korean Journal of Crystallography
    • /
    • v.2 no.1
    • /
    • pp.17-22
    • /
    • 1991
  • The crystal structure of an acetylene sorption complex of vacuum dehydrated fully Cda+ _exchanged zeolite A has been determined from three-dimensional X-ray diffraction data gathered by counter method. The structure was solved and refined in the cubic space group Pm3m at 294(1) K, a=12.202(3) A and Z=1. We crystal was prepared by dehydration at 723 K and 2.67×104 Pa for 2 days, followed by exposure to 1.60×104 Pa of acetylene gas at 298(1) K. All six Cd2+ions per unit cell are associated with 6-oxgen rings of the aluminosilicate framework. They are distributed over two distinguished threefold axes of unit cell; two of these Cd2+ ions are recessed 0.694 into the sodalite unit from (111) plane of three 0(3)'s and each approaches three framework oxides; the other four Cd2+ ions extend approximately 0.586A into the large cavity. The four Cd2+ ions are in a near tetrahedral environment, 2.220(9)A from·three framework oxide ions and 2.74(7) A from each carbon atom of an acetylene molecule(which is here counted as a monodentate ligand). Full matrix least squares refinement converged to the final error indices R1=0.093 and R2=0.105 using the 292 independent reflections for which I>3σ(I).

  • PDF

Morphological Interpretation of the Transformation Process of Urban Form in Gosan-Up (형태학적 개념을 활용한 조선시대 고산현의 도시형태 변천과정 해석)

  • Lee, Kyung-Chan;Kang, In-Ae
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.4
    • /
    • pp.37-49
    • /
    • 2014
  • This paper aims to interpret the transformation process of town plan of Gosan-up(高山), which was provincial administrative focus town in Josun dynasty, basing on morphological viewpoint. Morphological concepts, such as morphological frame, urban plan, kernel, colonization, route system, fixation line, fringe belt, plan unit & plan division, morphological period derived from the study of Conzen, M.R.G. and Caniggia, G. epidome district, break point, broken plot, urban fallow, privatization are adopted for the interpretation of urban form. Morphological period of Gosan can be divided in four ; formation of kernel & morphological structure, disintegration & redevelopment of the kernel, augmentative development of the kernel & formation of modern epidome district, outwards expanding of urbanized area, transition & reorganization of epidome district. Especially public leading projects such as construction of new regional connection road and public facilities such as myeon(township) office, agricultural cooperatives federation office, market, are main factors of morphological transformation of townplan. In the early stage, under the Japanese imperialism, construction of the new matrix route(Gosan-ro) through the kernel and followed planned routes gave way to disintegrating traditional areal plan unit and forming small block plan units in administrative facilities area. And linear plan units with commercial buildings were formed along the new matrix route and planned route adjacent to periodical market. In the latter stage, with development of public facilities, private sectors' large circulation institution and terminal outside the kernel with planned routes formed areal block based plan units with commercial and public buildings. And part of the spatial area with the linear plan unit were turned into urban fallow. With the transformation of town plan, new roads outside the kernel have substituted for traditional fixation line of waterway with road and topographical feature. Fringe belts were made successively along the new road and around the major intersections outside of existing urbanized area. Land use in fringe belts, constituting of outer locational tendency early on formation, was gradually replaced with commercial & business buildings.

Synthesis and Structure Dinitroethylenediamine Palladium(II) (Dinitroethylenediamine Palladium(II)의 합성 및 결정구조 연구)

  • Namgung Hae
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.74-77
    • /
    • 2004
  • The crystal structure of Dinitroethylenediaminepalladium(II), $Pd(C_2H_8N_2)(NO_2)_2$, has been determined by X-ray crystallography. Crystal data: a=7.425(3), b=8.480(4), c=11.885(2) ${\AA}$, Orthorhombic, $A2_1ma$ (Space Group No=36), Z=4, V=748.3(4) ${\AA}^3,\;D_c=2.295 gcm^{-3},\;{\mu}=2.457mm^{-1}$. The structure was solved by Patterson method and refined by full matrix least-square methods using unit weights. The final R and S values were $R_1=0.0306,\;R_w=0.0802,\;R_{all}=0.0320,\;and\;S=1.166)$ for the observed 377 reflections. Bond lengths and angles of palladium complex are similar to the previously reported data. The complex structure is one dimensional Reiset's salt type analogue showing zigzag chain of Pd-Pd length and angle of 3.762(2) ${\AA}$ and $161.41(5)^{\circ}$. The complex molecules are linked through inter-and intramolecular hydrogen bonds of 3.05(1) and 3.15(1) ${\AA}$ between oxygen and nitrogen.

Synthesis and Structure of N-Methylphenazinium-Tetracynnopalladate(II) Hydrate (N-Methylphenazinium-Tetracyanopalladate(II) Hydrate의 합성 및 결정구조 연구)

  • NamGung, Hae;Lee, Hyun-Mi
    • Korean Journal of Crystallography
    • /
    • v.17 no.1
    • /
    • pp.6-9
    • /
    • 2006
  • Crystal structure of Bis(N-Methylphenazinium)-Tetracyanopalladate(II) hydrate has been determined by X-ray crystallography. Crystal data: $(C_{13}H_{11}N_2){_2}[Pd(cn)_4]{\cdot}H_2O$, Monocline, Space group $P2_1/b$(No=14), a=9.783(4), b=10.788(4), c=13.666(4) ${\AA},\;{\beta}=104.59(5),\;Z=2,\;V=1392.9{\AA}{^3},\;Dc=1.476gcm^{-3},\;F(000)=632,\;{\mu}=7.05cm^{-1}$. The structure was solved by Patterson method and refined by full matrix least-square methods using unit weights. The final R and S values were R=0.0257, Rw=0.0732, Rall=0.0283 and S=1.07 for 1930 observed reflections. Both cation and anion complexes are essentially planar and have dihedral angles of $10.16(4)^{\circ}$. The planar complex anions are sandwiched between slightly bent cations. The interplanar separations in one triad and between two triads are 3.419(3) and $3.402(4){\AA}$, respectively. The triads are stacked along b-axis.

Synthesis and Structure of Ethylenediammonium Chromate (Ethylenediammonium Chromate의 합성 및 결정구조 연구)

  • NamGung, Hae;Park, Sang-Su
    • Korean Journal of Crystallography
    • /
    • v.17 no.1
    • /
    • pp.10-13
    • /
    • 2006
  • The crystal structure of Ethylenediammonium chromate, $C_2H_{10}N_2{\cdot}CrO_4$, has been determined by X-ray crystallography. Crystal data: a=6.667(2), b=8.845(2), c:11.827(2) ${\AA}$, Orthorhombic, $P2_12_12_1$(Space Group No=19), Z=4, V=697.4(3) ${\AA}{^3},\;Dc=1.696gcm^{-3},\;{\mu}=1.594mm^{-1}$. The structure was solved by Patterson method and refined by full matrix least-square methods using unit weights. The final R and S values were $R_1=0.0254,\;R_w=0.070,\;R_{all}=0.0255$ and S=1.133 for the observed 1195 reflections. Bond length and angles of two ions are similar to the previously reported data. The ethylenediammonium ion has trans-configuration and are linked through many hydrogen bonds with neighboring anions.