• Title/Summary/Keyword: Unit Hydrograph

Search Result 211, Processing Time 0.028 seconds

Determination of Flood Hydrograph by Remote Sensing Techniques in a Small Watershed (원격탐사 기법에 의한 소유역의 홍수 수문곡선 결정)

  • 남현옥;박경윤;조성익
    • Korean Journal of Remote Sensing
    • /
    • v.5 no.1
    • /
    • pp.13-27
    • /
    • 1989
  • In recent years satellite data have been increasingly used for the analysis of floodprone areas. This study was carried out to demonstrate the usefulness of repetitive satellite imagery in monitoring flood levels of the Pyungchang watershed. Runoff characteristics parameters were analyzed by Soil Conservation Service(SCS) Runoff Curve Number(RCN) based on Landsat imagery and Digital Terrain Model data. The RCN average within the watershed was calculated from RCN estimates for all the pixels(picture elements) and adjusted by antecedent precipitation conditions. The direct runoff hydrograph was derived from the unit hydrograph using SCS dimensionless unit hydrograph and effective rainfalls estimated by the SCS method. In comparsion of the direct runoff hydrograph with the measured rating curve their peak times differ by one hour and peak discharges differ by 5.9 percents of the discharge from each other. It was shown that repetitive satellite image could be very useful in timely estimating watershed runoffs and evaluating ever-changing surface conditions of a river basin.

Revision of Snyder's Coefficient for Synthesizing Uint Hydrograph (단위유량도합성을 위한 Snyder 계수의 조정)

  • 선우중호;고영찬
    • Water for future
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 1986
  • The synthetic unit hydrograph is commonly used for the derivation of a design hydregraph. The existing Snyder's equation for the syntheses of unit hydrograph was found to give relatively a flat hydrograph in comparison with observed hydrograph and a revision is required. HEC-1 model is used to simulated observed hydrograhp in the South Han River basin and results are used as an input for the regression. The basin is subdivided into small drainage areas and the synthesized hydrograph is routed through channels. After the calculated hydrographs are compared with observed one, the synthesized hydrograph of each subbasisn is revised and the new snyder's equation is derived . The revised equation gives rapid increase of discharge in rising limb and larger peak.

  • PDF

Development of Flood Analysis Module for the Implementation of a Web-Based Flood Management System (웹기반 홍수관리시스템 구현을 위한 홍수분석모듈개발)

  • Jung, In Kyun;Park, Jong Yoon;Kim, Seong Joon;Jang, Cheol Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.103-111
    • /
    • 2014
  • This study was to develop the flood analysis module (FAM) for implementation of a web-based real-time agricultural flood management system. The FAM was developed to apply for an individual watershed, including agricultural reservoir. This module calculates the flood inflow hydrograph to the reservoir using effective rainfall by NRCS-CN method and unit hydrograph calculated by Clark, SCS, and Nakayasu synthetic unit hydrograph methods, and then perform the reservoir routing by modified Puls method. It was programmed to consider the automatic reservoir operation method (AutoROM) based on flood control water level of reservoir. For a $15.7km^2$ Gyeryong watershed including $472{\times}10^4m^3$ agricultural reservoir, rainfall loss, rainfall excess, peak inflow, total inflow, maximum discharge, and maximum water level for each duration time were compared between the FAM and HEC-HMS (applied SCS and Clark unit hydrograph methods). The FAM results showed entirely consistent for all components with simulated results by HEC-HMS. It means that the applied methods to the FAM were implemented properly.

A STUDY ON THE PARAMETER ESTIMATION OF SNYDER-TYPE SYNTHETIC UNIT-HYDROGRAPH DEVELOPMENT IN KUM RIVER BASIN

  • Jeong, Sang-man;Park, Seok-Chae;Lee, Joo-Heon
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.219-229
    • /
    • 2001
  • Synthetic unit hydrograph equations for rainfall run-off characteristics analysis and estimation of design flood have long and quite frequently been presented, the Snyder and SCS synthetic unit hydrograph. The major inputs to the Snyder and SCS synthetic unit hydrograph are lag time and peak coefficient. In this study, the methods for estimating lag time and peak coefficient for small watersheds proposed by Zhao and McEnroe(1999) were applied to the Kum river basin in Korea. We investigated lag times of relatively small watersheds in the Kum river basin in Korea. For this investigation the recent rainfall and stream flow data for 10 relatively small watersheds with drainage areas ranging from 134 to 902 square kilometers were gathered and used. 250 flood flow events were identified along the way, and the lag time for the flood events was determined by using the rainfall and stream flow data. Lag time is closely related with the basin characteristics of a given drainage area such as channel length, channel slope, and drainage area. A regression analysis was conducted to relate lag time to the watershed characteristics. The resulting regression model is as shown below: ※ see full text (equations) In the model, Tlag is the lag time in hours, Lc is the length of the main river in kilometers and Se is the equivalent channel slope of the main channel. The coefficient of determinations (r$^2$)expressed in the regression equation is 0.846. The peak coefficient is not correlated significantly with any of the watershed characteristics. We recommend a peak coefficient of 0.60 as input to the Snyder unit-hydrograph model for the ungauged Kum river watersheds

  • PDF

Estimation of Design Discharge Considering Nonstationarity for River Restoration in the Mokgamcheon (목감천 복원설계를 위한 비정상성을 고려한 설계홍수량의 산정)

  • Lee, Kil Seong;Oh, Jin-Ho;Park, Kidoo;Sung, Jang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1361-1375
    • /
    • 2013
  • The design flow considering nonstationarity is estimated to determine the design flood related to hydraulic structure quantitatively based on the design process for stream restoration in the Mokgamcheon watershed proposed by Lee et al. (2011). The purpose of this research is to suggest new ways that the design flood was calculated considering nonstationarity at the Mokgamcheon watershed. Storm-unit hydrograph method to calculate design flood and direct frequency analysis were applied and nonstationarity was considered for the frequency analysis through extRemes toolkit developed at NCAR (National Center for Atmospheric Research). Although the method of direct flood frequency analysis due to dealing with flowrates directly has a more reliable than strom-unit hydrograph method, as a result, the method of direct flood frequency analysis underestimated the design flood than strom-unit hydrograph method due to the characteristics of the flow data. Therefore, the flood of storm-unit hydrograph method (100 years frequency) was determined as the design flood in the Mokgamcheon watershed.

Estimation of Synthetic Unit Hydrograph Using Geospatial Shape Factors and Nash Model in Mid-size Watershed (중소규모유역의 지형공간적 형상계수를 이용한 Nash 모형기반의 합성단위도 산정)

  • Kim, Jin Gyeom;Kim, Jong Min;Kang, Boo Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.547-558
    • /
    • 2013
  • Improved methodology of Synthetic Unit Hydrograph (SUH) utilized generally in hydrologic design work was suggested. In this study, regression analysis between peak hydrological data and geospatial data was applied to estimate specific peak flow and peak time for determining shape of SUH. Regression formulas for specific peak flow with respect to shape factors show higher coefficient of determination (0.73~0.81) than the ones with geospatial components only (0.52~0.69). The areal limitation of unit hydrograph application is regarded as 500~700 $km^2$. The validation through rainfall-runoff simulation shows encouraging results that relative error is 1.7~29.0%(Avg. 11.6%) for the case of using SUH developed in this study and 35.0~ 64.9% (Avg. 46.7%) for the SUH in the previous study except for the extraordinary cases.

Determination of Optimal Unit Hydrographs and Infiltration Rate Functions at the site of the Su-Jik Bridge in the HwangGuJichen River (황구지천 수직교 지점에서의 최적 단위도 및 침투율의 결정)

  • Ahn, Taejin;Cho, Byung Doon;Lyu, Heui Jeong
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.57-66
    • /
    • 2005
  • This paper is to present the determination of the optimal loss rate parameters and unit hydrographs from the observed single rainfall-runoff event using optimization model. The linear program models has been formulated to derive the optimal unit hydrographs and loss rate parameters for the site of the Su-Jik Bridge in the HwangGuJichen River; one minimizes the summation of the absolute residual between predicted and observed runoff ordinates. In the perturbation stage of parameters the trial and error method has been adopted to determine the loss rate parameters for Kostiakov's, Philip's, Horton's, and Green-Ampt's equation. The unique unit hydrograph ordinates for a given rainfall-runoff event is exclusively obtained with ${\Phi}$ index, but unit hydrograph ordinates depend upon the parameters for each loss rate equations. In this paper the single rainfall-runoff event observed from the sample watershed is considered to test the proposed method. The optimal unit hydrograph obtained by the optimization model has smaller deviations than the ones by the conventional method.

  • PDF

The Comparison of Existing Synthetic Unit Hydrograph Method in Korea (국내 기존 합성단위도 방법의 비교)

  • Jeong, Seong-Won;Mun, Jang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.659-672
    • /
    • 2001
  • Generally, design flood for a hydraulic structure is estimated using statistical analysis of runoff data. However, due to the lack of runoff data, it is difficult that the statistical method is applied for estimation of design flood. In this case, the synthetic unit hydrograph method is used generally and the models such as NYMO method, Snyder method, SCS method, and HYMO method have been widely used in Korea. In this study, these methods and KICT method, which is developed in year 2000, are compared and analyzed in 10 study areas. Firstly, peak flow and peak time of representative unit hydrograph and synthetic unit hydrograph in study area are compared, and secondly, the shape of unit hydrograph is compared using a root mean square error(RMSE). In Nakayasu method developed in Japan, synthetic unit hydrograph is very different from peak flow, peak time, and the shape of representative unit hydrograph, and KICT method(2000) is superior to others. Also, KICT method(2000) is superior to others in the aspects of using hydrologic and topographical data. Therefore, Nakayasu method is not a proper in hydrological practice. Moreover, it is considered that KICT model is a better method for the estimation of design flood. However, if other model, i.e. SCS method, Nakayasu method, and HYMO method, is used, parameters or regression equations must be adjusted by analysis of real data in Korea.

  • PDF

Suggestion of Synthetic Unit Hydrograph Method Considering Hydrodynamic Characteristic on the Basin (유역의 동수역학적 특성을 고려한 합성단위도 기법의 제시)

  • Kim, Joo Cheol;Choi, Yong Joon;Jeong, Dong Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.47-55
    • /
    • 2011
  • This study suggests new synthetic unit hydrograph method considering hydrodynamic characteristic on the basin. The suggested method based on width function GIUH, and the procedure is summarized as follows; 1) Draw up a travel distance distribution map (width function) which is raster of length between from center of individual cells to the outlet by GIS. 2) Calculation of travel time distribution map (rescaled width function) by hydrodynamic parameters and travel distance distribution map. 3) Derivation of IUH and Duration UH from rescaled width function. 4) Comparison of shape of UH between suggested method and existing synthetic unit hydrograph methods. The target basins are selected Ipyeong and Tanbu subwatershed in the Bocheong Basin. The target basins are similar scale (watershed area), but different drainage structure (drainage density et al.). Therefore we anticipate that there are different hydrologic response functions because different hydrodynamic characteristics. As a result of derivation of UH, existing synthetic unit hydrograph methods are similar shape of UHs about Ipyeong and Tanbu watersheds, but the suggested method is different shape of ones. As a result of application to observed data, the peak discharge by suggested method is similar to existing synthetic unit hydrograph methods, but the peak time is well correspondence between those. Henceforth, if the suggested method combines with the rational velocity estimation method, it is useful method for synthetic of UH in ungauged watershed.

Sediment Yield by Instantaneous Unit Sediment Graph

  • Lee, Yeong-Hwa
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1998
  • An instantaneous unit sediment graph (IUSG) model is investigated for prediction of sediment yield from an upland watershed in Northwestern Mississippi. Sediment yields are predicted by convolving source runoff with an IUSG. The IUSG is the distribution of sediment from an instantaneous burst of rainfall producing one unit of runoff. The IUSG, defined as a product of the sediment concentration distribution (SCD) and the instantaneous unit hydrograph (IUH), is known to depend on the characteristics of the effective rainfall. The IUH is derived by the Nash model for each event. The SCD is assumed to be an exponential function for each event and its parameters were correlated with the effective rainfall characteristics. A sediment routing function, based on travel time and sediment particle size, is used to predict the SCD.

  • PDF