• Title/Summary/Keyword: Unit Gain Bandwidth

Search Result 34, Processing Time 0.022 seconds

CMOS Analog-Front End for CCD Image Sensors (CCD 영상센서를 위한 CMOS 아날로그 프론트 엔드)

  • Kim, Dae-Jeong;Nam, Jeong-Kwon
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • This paper describes an implementation of the analog front end (AFE) incorporated with the image signal processing (ISP) unit in the SoC, dominating the performance of the CCD image sensor system. New schemes are exploited in the high-frequency sampling to reduce the sampling uncertainty apparently as the frequency increases, in the structure for the wide-range variable gain amplifier (VGA) capable of $0{\sim}36\;dB$ exponential gain control to meet the needed bandwidth and accuracy by adopting a new parasitic insensitive capacitor array. Moreover, the double cancellation of the black-level noise was efficiently achieved both in the analog and the digital domain. The proposed topology fabricated in a $0.35-{\mu}m$ CMOS process was proved in a full CCD camera system of 10-bit accuracy, dissipating 80 mA at 15 MHz with a 3.3 V supply voltage.

  • PDF

A 100~110 GHz LNA and A Coupler Using Standard 65 n CMOS Process (상용 65 n CMOS 공정을 이용한 100~110 GHz 저잡음 증폭기와 커플러)

  • Kim, Jihoon;Park, Hongjong;Kwon, Youngwoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.278-285
    • /
    • 2013
  • In this paper, a 100~110 GHz LNA and A coupler using standard 65 n CMOS process is presented. The LNA consists of three common source FET stages. A few layout types are considered to get high gain characteristic of unit common source cell. Also, optimized performance to achieve low noise characteristic and enough gain. Coupler is composed of broadside coupler using multimetal in CMOS fabrication. In the coupler, the metal strip to meet density rule is used, and the coupler is designed with consideration of the metal strip to function properly. Gain of fabricated LNA is 5.64 dB at 100 GHz and 6.39 dB at 110 GHz. Bandwidth is over 10 % and noise figure is 11.66 dB at 100 GHz. Fabricated coupler has shown insertion loss of 2~3 dB at 100~110 GHz band. Magnitude mismatch of coupler is below 1 dB and phase mismatch of coupler is below $5^{\circ}$.

Block-based Adaptive Bit Allocation for Reference Memory Reduction (효율적인 참조 메모리 사용을 위한 블록기반 적응적 비트할당 알고리즘)

  • Park, Sea-Nae;Nam, Jung-Hak;Sim, Dong-Gy;Joo, Young-Hun;Kim, Yong-Serk;Kim, Hyun-Mun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.68-74
    • /
    • 2009
  • In this paper, we propose an effective memory reduction algorithm to reduce the amount of reference frame buffer and memory bandwidth in video encoder and decoder. In general video codecs, decoded previous frames should be stored and referred to reduce temporal redundancy. Recently, reference frames are recompressed for memory efficiency and bandwidth reduction between a main processor and external memory. However, these algorithms could hurt coding efficiency. Several algorithms have been proposed to reduce the amount of reference memory with minimum quality degradation. They still suffer from quality degradation with fixed-bit allocation. In this paper, we propose an adaptive block-based min-max quantization that considers local characteristics of image. In the proposed algorithm, basic process unit is $8{\times}8$ for memory alignment and apply an adaptive quantization to each $4{\times}4$ block for minimizing quality degradation. We found that the proposed algorithm can obtain around 1.7% BD-bitrate gain and 0.03dB BD-PSNR gain, compared with the conventional fixed-bit min-max algorithm with 37.5% memory saving.

Design of Three-stacked Microstrip Patch Array Antenna Having Tx/Rx Feeds For Satellite Communication (위성통신을 위한 송수신 겸용 삼중 적층 마이크로스트립 패치 배열 안테나 설계)

  • Park, Ung-Hee;Noh, Haeng-Sook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.853-859
    • /
    • 2007
  • This paper presents a microstrip patch array antenna having transmission feed and reception feed for satellite communication in the Ku band. In this paper, the element of the patch array antenna is a three-stacked structure consisting of one radiation patch and two parasitic patches for high gain and wide bandwidth characteristics. To obtain higher gain, the unit elements are expanded into a $1{\times}8$ may using a mixture of series and parallel feeds. The proposed antenna has horizontal polarization for the Rx band and vertical polarization for the Tx band. To verify the practicality of this antenna, we fabricated a three-stacked patch array antenna and measured its performance. The gain of the array antenna in the Rx and Tx bands exceeds 17 and 18 dBi, respectively. The impedance bandwidth is over 10 % in both bands. The cross-polarization level is below -25 dB, and the sidelobe level is below -9.4 dB.

Antenna Gain Enhancement Using FSS(Frequency Selective Surface) with Defect Mode Characteristic (결함 모드 특성을 갖는 주파수 선택적 표면에 의한 안테나 이득 향상)

  • Kim, June-Hyong;Nam, Sung-Soo;Cho, Tae-Joon;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.147-153
    • /
    • 2009
  • In this paper, FSS(Frequency Selective Surface) using defect mode characteristic is proposed. The unit cell using defect mode characteristic of the proposed FSS is offered lower resonant frequency in the same cell size. The number of suitable array is optimized 13 by 13. Also, the patch antennas operated in WCDMA(Wideband Code Division Multiple Access) Tx band and Rx band are designed for the comparison. The gain value of proposed FSS-1 complex structure (the patch antenna of Tx band and FSS) is improved 3.3 dB from 9.98 dBi to 13.28 dBi in Tx band. The gain value of proposed FSS-2 complex structure(the patch antenna of Rx band and FSS) is improved 5.53 dB from 9.81 dBi to 15.34 dBi in Rx band. Also the measured impedance bandwidth($VSWR{\leq}2$) of manufactured $13{\times}13$ array antenna is from 337 MHz(1.87 to 2.21 GHz). The measured radiation gain is 11.39 dBi(1.94 GHz), 13.11 dBi(2.05 GHz), 11.09 dBi(2.14 GHz). The measured radiation efficiency is 81 %. Because the proposed FSS structure has more higher gain, it will be applied to antenna of WCDMA repeater system.

Development of a Portable ELF Electric Field Meter (휴대용 극저주파 전장측정기 개발)

  • Kil, Gyung-Suk;Song, Jae-Yong;Kim, Il-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.120-126
    • /
    • 2000
  • This paper dealt with the developed portable electric field meter which consisted of planar-type sensor, analog amplifier with gain controller, A/D convertor, and display unit. The principle of the planar-type sensor for detecting time-varying electric field of extremely low frequency (ELF) bandwidth was described, and a calibration system using cylindrical guard electrodes and parallel-plate electrodes was proposed. From the calibration experiment, the frequency bandwidth and the sensitivity of the developed electric field meter was $17[Hz]{\sim}7[kHz]$, and 4.45[mV/V/m], respectively. Also it can measure the electric field strength up to 10[kV/m], and the measured result was displayed on the liquid crystal display in digit. The electric field meter can be widely applied to measure electric field strength radiated from power lines, computers, and home appliances such as hair dryer, heater, etc.

  • PDF

Vibration-Monitoring of a Real Bridge by Using a $Moir\'{e}$-Fringe-Based Fiber Optic Accelerometer

  • Kim, Dae-Hyun;Lee, Jong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.556-562
    • /
    • 2007
  • This paper presents the use of a novel fiber optic accelerometer system to monitor ambient vibration (both wind-induced one and vehicle-induced) of a real bridge structure. This sensor system integrates the $Moir\'{e}$ fringe phenomenon with fiber optics to achieve accurate and reliable measurements. A low-cost signal processing unit implements unique algorithms to further enhance the resolution and increase the dynamic bandwidth of the sensors. The fiber optic accelerometer has two major benefits in using this fiber optic accelerometer system for monitoring civil engineering structures. One is its immunity to electromagnetic (EM) interference making it suitable for difficult applications in such environments involving strong EM fields, electrical spark-induced explosion risks, and cabling problems, prohibiting the use of conventional electromagnetic accelerometers. The other is its ability to measure both low- and high-amplitude vibrations with a constantly high resolution without pre-setting a gain level, as usually required in a conventional accelerometer. The second benefit makes the sensor system particularly useful for real-time measurement of both ambient vibration (that is often used for structural health monitoring) and strong motion such as earthquake. Especially, the semi-strong motion and the small ambient one are successfully simulated and measured by using the new fiber optic accelerometer in the experiment of the structural health monitoring of a real bridge.

On-chip Power Supply Noise Measurement Circuit with 2.06mV/count Resolution (2.06mV/count의 해상도를 갖는 칩 내부 전원전압 잡음 측정회로)

  • Lee, Ho-Kyu;Jung, Sang-Don;Kim, Chul-Woo
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.9-14
    • /
    • 2009
  • This paper describes measurement of an on-ship power supply noise in mixed-signal integrated circuits. To measure the on-chip power supply noise, we can check the effects of analog circuits and compensate it. This circuit consists of two independent measurement channels, each consisting of a sample and hold circuit and a frequency to digital converter which has a buffer and voltage controlled oscillator(VCO). The time-based voltage information and frequency-based power spectrum density(PSD) can be achieved by a simple analog to digital conversion scheme. The buffer works like a unit-gain buffer with a wide bandwidth and VCO has a high gain to improve resolution. This circuit was fabricated in a 0.18um CMOS technology and has 2.06mV/count. The noise measurement circuit consumes 15mW and occupies $0.768mm^2$.

  • PDF

Conception and Modeling of a Novel Small Cubic Antenna Design for WSN

  • Gahgouh Salem;Ragad Hedi;Gharsallah Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2024
  • This paper presents a novel miniaturized 3-D cubic antenna for use in wireless sensor network (WSN) application. The geometry of this antenna is designed as a cube including a meander dipole antenna. A truly omnidirectional pattern is produced by this antenna in both E-plane and H-plane, which allows for non-intermittent communication that is orientation independent. The operating frequency lies in the ISM band (centered in 2.45 GHz). The dimensions of this ultra-compact cubic antenna are 1.25*1.12*1cm3 which features a length dimension λ/11. The coefficient which presents the overall antenna structure is Ka=0.44. The cubic shape of the antenna is allowing for smart packaging, as sensor equipment may be easily integrated into the cube hallow interior. The major constraint of WSN is the energy consumption. The power consumption of radio communication unit is relatively high. So it is necessary to design an antenna which improves the energy efficiency. The parameters considered in this work are the resonant frequency, return loss, efficiency, bandwidth, radiation pattern, gain and the electromagnetic field of the proposed antenna. The specificity of this geometry is that its size is relatively small with an excellent gain and efficiency compared to previously structures (reported in the literature). All results of the simulations were performed by CST Microwave Studio simulation software and validated with HFSS. We used Advanced Design System (ADS) to validate the equivalent scheme of our conception. Input here the part of summary.

Zeroth-Order Resonant Antenna with Frequency Reconfigurable Radiating Structures (주파수 재구성 가능한 방사 구조를 갖는 영차 공진 안테나)

  • Lee, Hongmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.12-20
    • /
    • 2013
  • In this paper, a co-planar waveguide(CPW) fed zeroth-order resonant(ZOR) antenna with frequency reconfigurable radiating structures is fabricated and measured. The unit cell of proposed antenna consists of a series metal-insulator-metal(MIM) capacitor and two shunt line inductors which are shorted through the via. The proposed antenna is designed based on a composite right/left-handed(CRLH) transmission line with two unit cells and it has open ended structure in order to radiate electromagnetic energy mainly on the shunt arm. In order to reduce the antenna size and to exhibit a frequency reconfigurable ability using diode switches four straight strips bent by 90 degrees are used as shunt inductors. The total size of fabricated antenna is $0.22{\lambda}_0{\times}0.16{\lambda}_0$ at zeroth-order resonant(ZOR) frequency. The measured maximum gain and bandwidth (VSWR ${\leq}2$) are 3.1 dBi and 56MHz at ZOR frequency of 2.97 GHz, respectively. This type of antenna can be applied to a frequency reconfigurable antenna system with triple bands.