• Title/Summary/Keyword: Unit Fraction

Search Result 340, Processing Time 0.024 seconds

Comparison of Spray Characteristics according to Physical Properties of Ethanol/Gasoline Blended Fuel (에탄올/가솔린 혼합연료의 물리적 특성에 따른 분무 특성 비교)

  • Kim, Woong Il;Kim, Youngkun;Lee, Hwang Bok;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.109-115
    • /
    • 2017
  • The aim of this study is to investigate the effect of physical properties of fuels on spray characteristics in the gasoline direct injection system. Injection rate, spray visualization, and spray pattern experiments were performed to analyze the spray characteristics of ethanol, gasoline, and ethanol/gasoline blends. We measured injection rate of each fuel via the Bosch method. The spray visualization experiment was also carried out at atmospheric pressure using a high-speed camera. Finally, the average of drop surface area per unit volume was measured using the optical patternator. The experimental results from Bosch method showed that peak injection rate increased when the volume fraction of ethanol increased. In addition, higher viscosity of ethanol than that of gasoline leads to longer injection delay. At the initial injection region before reaching 0.8 ms, the spray tip penetration becomes longer as increasing the volume fraction of ethanol, but reversely shorter after 0.8 ms. It was found that ethanol makes spray angle become larger. The surface area per unit volume of the drop was decreased as the distance from the injection tip or the concentration of the gasoline increased.

Tensile Behaviour of Foamed Metal Matrix Composite Using Stochastic FE Model (통계적 유한요소모델을 이용한 발포된 금속기지 복합재료의 인장특성)

  • 전성식
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.34-39
    • /
    • 2004
  • In this paper, a modified and representative unit cell model was employed to study the tensile behaviour of closed-cell metallic foams with varying spatial density distribution as well as material imperfections. The density variation was assumed to follow a statistical probability distribution of the Gaussian type. A multiple cell finite element model, utilising the modified unit cell, was developed. The model exhibits deformation patterns similar to those observed in tensile testing. The nominal stress-strain curve obtained from quasistatic tensile of the foam was compared with experimental findings and was found to be in good agreement in the scheme of maximum strength only if the appropriate density distribution and volume fraction of internal imperfections are taken into account. Moreover, maximum tensile strength of the aluminium foam was found to be more sensitive to the volume fraction of imperfection than standard deviation of the density.

Effects of Inhibition on Formation and Growth of Polymer in Butadiene Extraction Unit (Butadiene Extraction Unit 내의 Polymer 생성 억제 효과)

  • Im, Gyeong
    • The Journal of Natural Sciences
    • /
    • v.5 no.2
    • /
    • pp.63-73
    • /
    • 1992
  • There are many methods of obtaining butadiene described in the literature. In the america it is produced largely from petroleum gases, i.e., by catalytic dehydrogenation of butene of butene-butane mixtures. Butadiene can be recovered from the $C_4$ residue of an olefin plant by distilling off a fraction containing most of the butadiene, catalytically hydrogenating the higher acetylenes to olefins and separating the product from other olefins and isobutane by extraction. Also it can be obtained by cracking naphtha and light oil. Among the individual dienes of commercial importance, 1, 3-butadiene is of first importance. It is used primarily for the production of polymers.In the present paper, it was investigated for a effect of the formation and the growth inhibition of popped corn polymer in butadiene extraction unit. As a result of study, inhibitors, $NaNO_2$ and TBC were good effective for inhibition of the formation and growth in popcorn polymer. The rational formula of popcorn polymer obtained was $(C_4H_6)_x$.

  • PDF

Characterization of Partially Purified Extracellular Protease of Local Bacteria BAC-4

  • Setiasih, Siswati
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.161-161
    • /
    • 1998
  • To achieve the aim of this investigation, the extracellular protease was isolated from bacteria BAC-4, a strain was cultivated in the medium for the production of penicillin acilase in a period of 32 hours. The enzyme was first purified by aceton precipitation method, followed by ion exchange chromatography on DEAE-sephacel column. The highest specific activity of the aceton fraction was found to be 2.19 unit per mg, with degree of purification of 13 times. Further purification of the enzyme on DEAE -sephacel had a specific activity of 58.6 unit per mg and degree of purification of 344 times compared to its crude extract. The optimum pH of the enzyme was 8.4, and the potimum temparature was 37$^{\circ}C$. The K$\_$M/ and $V_{max}$ calculated at experiment conditions were found to be 0.66%(W/V) and 3.61 unit per mL respectively.

  • PDF

FDTD Analysis of the Absorption Characteristics for Grid Ferrite Electromagnetic Wave Absorber (FDTD를 이용한 격자형 페라이트 전파흡수체 특성 해석)

  • 이재용;정연춘;명노훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.483-490
    • /
    • 1998
  • The reflectivity of a grid ferrite electromagnetic wave absorber is analyzed using finite difference time domain (FDTD) method, which is usually used in anechoic chambers for EMI / EMS test. The frequency dispersive characteristics of ferrite medium and its boundary condition are modeled using magnetic flux in addition to E- and H-fields. By applying Floquets theorem, FDTD analysis of the grid ferrite absorber with periodic infinite array is simplified as a unit cell problem. The method of homogenization which is mainly utilized in the calculation of absorber reflectivity as a low frequency technique takes only into account volume fraction of the unit cell of the absorber except for the structure of medium geometry. However, the presented method in this paper can analyze the geometry effect of the unit cell with its medium characteristics up to high frequency region.

  • PDF

Right Ventricular Strain Is Associated With Increased Length of Stay After Tetralogy of Fallot Repair

  • Ranjini Srinivasan;Jennifer A. Faerber;Grace DeCost;Xuemei Zhang;Michael DiLorenzo;Elizabeth Goldmuntz;Mark Fogel;Laura Mercer-Rosa
    • Journal of Cardiovascular Imaging
    • /
    • v.30 no.1
    • /
    • pp.50-58
    • /
    • 2022
  • BACKGROUND: Little is known regarding right ventricular (RV) remodeling immediately after Tetralogy of Fallot (TOF) repair. We sought to describe myocardial deformation by cardiac magnetic resonance imaging (CMR) after TOF repair and investigate associations between these parameters and early post-operative outcomes. METHODS: Fifteen infants underwent CMR without sedation as part of a prospective pilot study after undergoing complete TOF repair, prior to hospital discharge. RV deformation (strain) was measured using tissue tracking, in addition to RV ejection fraction (EF), volumes, and pulmonary regurgitant fraction. Pearson correlation coefficients were used to determine associations between both strain and CMR measures/clinical outcomes. RESULTS: Most patients were male (11/15, 73%), with median age at TOF repair 53 days (interquartile range, 13,131). Most patients had pulmonary stenosis (vs. atresia) (11/15, 73%) and 7 (47%) received a transannular patch as part of their repair. RV function was overall preserved with mean RV EF of 62% (standard deviation [SD], 9.8). Peak radial and longitudinal strain were overall diminished (mean ± SD, 33.80 ± 18.30% and -15.50 ± 6.40%, respectively). Longer hospital length of stay after TOF repair was associated with worse RV peak radial ventricular strain (correlation coefficient (r), -0.54; p = 0.04). Greater pulmonary regurgitant fraction was associated with shorter time to peak radial RV strain (r = -0.55, p = 0.03). CONCLUSIONS: In this small study, our findings suggest presence of early decrease in RV strain after TOF repair and its association with hospital stay when changes in EF and RV size are not yet apparent.

Production of Hepatotoxin by the Cyanobacterium Scytonema sp. Strain BT 23

  • Ashok, Kumar;Singh, D.P.;Tyagi, M.B.;Kumar, Arvind;Prasuna, E.G.;Thakur, J.K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.375-380
    • /
    • 2000
  • The preliminary screening of several cyanobacteria, using mice bioassay, reveale the production of a hepatotoxin by the cyanobacterium Scytonema sp. strain BT 23 isolated from soil. An intraperitoneal injection of the crude toxin (LD50 56 mg/kg body wt) from this strain caused the death of the mice within 40 min, and the anmals showed slinical signs of mice within 40 min, and the animals showed clinical signs of hepatotoxicity. The toxin was purified and partially characterized. The active fraction appears to be nonpolar in nature and shows absorption peaks at 240 and 285 nm. The purified toxin had an LD50 of TEX>$100<\mu\textrm{g}/kg$ body wt and the test mice died within 40 min of toxin administration. The toxin-treated mice showed a 1.65-fold increase in liver weight at 40 min and the liver color chnged to dark red due to intrahepatic hemorrhage and pooling of blood. Furthermore, the administration of the toxin to test mice induced a 2.58, 2.63, and 2.30-fold increse in the activity of the serum enzymes alanine aminotransferase, lactate dehydrogenase, and alkaline phosphatase, respectively. Further experiments with the 14C-labeled toxin revealed a maximum accumulation of the toxin in the liver. The clinical symptoms in the mice were similar to those produced by microcystin-L.R. These results suggest that hepatotoxins may also be produced in non bloom-forming planktonic cyanobacteria.

  • PDF

Effect of Protective Compounds on the Survival, Electrolyte Leakage, and Lipid Degradation of Freeze-Dried Weissella paramesenteroides LC11 During Storage

  • Yao, Amenan A.;Wathelet, Bernard;Thonart, Philippe
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.810-817
    • /
    • 2009
  • The effect of cryoprotectants (maltodextrin+glycerol) and cryoprotectants+antioxidant [ascorbic acid and/or butylated hydroxytoluene (BHT)] mixtures on the survival, electrolyte leakage, and lipid degradation of freeze-dried Weissella paramesenteroides LC11 during storage was investigated and compared with that of the control (cells without additives) over a 90-day storage period at 4 or $20^{\circ}C$ in glass tubes with water activity ($a_w$) of 0.23. The survival, electrolyte leakage, and lipid degradation were evaluated through colony counts, electrical conductivity, and thiobarbituric acid reactive substances (TBARS) content, respectively. The fatty acids composition was determined by gas chromatography, in both the total lipid extract and the polar lipid fraction, and compared with that of the control after the 90-day storage period. As the storage proceeded, increases in leakage value and TBARS content, as well as a decrease in viability, were observed. After 90 days of storage, the major fatty acids found in both the total lipid extract and the polar lipid fraction were palmitic (16:0), palmitoleic (16:1), stearic (18:0), oleic (18:1), linoleic (18:2), and linolenic (18:3) acids. The survival, leakage value, TBARS content and 18:2/16:0 or 18:3/16:0 ratio were the greatest for the protected strain held at $4^{\circ}C$. Cells with the cryoprotectants+BHT mixture showed the highest percentage of survival and 18:2/16:0 or 18:3/16:0 ratio in both lipid extracts, as well as the lowest leakage value and TBARS content after the 90-day storage period. Drying cells with the cryoprotectants+BHT mixture considerably slowed down polar lipid degradation and loss of membrane integrity, resulting in improved viability during storage.

Performance Simulation of Planar Solid Oxide Fuel Cells Characteristics: Computational Fluid Dynamics (전산 유체 모델링을 이용한 평판형 고체산화물 연료전지 작동특성 전산모사)

  • Woo Hyo Sang;Chung Yong-Chae
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.69-79
    • /
    • 2004
  • To correctly simulate performance characteristics of fuel cells with a modeling method, various physical and chemical phenomena must be considered in fuel cells. In this study, performance characteristics of planar solid oxide fuel cells were simulated by a commercial CFD code, CFD-ACE+. Through simultaneous considerations for mass transfer, heat transfer and charge movement according to electrochemical reactions in the 3-dimensional planar SOFC unit stack, we could successfully predict performance characteristics of solid oxide fuel cells under operation for structural and progress variables. In other words, we solved mass fraction distribution of reactants and products for diffusion and movement, and investigated qualitative and quantitative analysis for performance characteristics in the SOFC unit stack through internal temperature distribution and polarization curve for electrical characteristics. Through this study, we could effectively predict performance characteristics with variables in the unit stack of planar SOFCs and present systematic approach for SOFCs under operation by computer simulation.

An E-score Development Methodology for Life Cycle Impact Assessment

  • Young-Min Park;Jai-Rip Cho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.68
    • /
    • pp.51-65
    • /
    • 2001
  • This study is to make LCIA(Life Cycle Impact Assessment) easier as a methodology of environmental scores(called E-score) that integrated environmental load of each emission substance based on environmental damage such as in human health, ecosystem and resources category. The concept is to analyzes the LCI(Life Cycle Inventory) and defines the level of environment damages for human health, ecosystem and resources to objective impact assessment standard, and makes the base of marginal damage to calculate the damage factor, which can present the indication that can establish the standard value of environmental impact. First, damages to human health are calculated by fate analysis, effect analysis and damage analysis to get the damage factor of health effect as a DALY(Disability Adjusted Life Years) unit. Second, damages to ecosystem are calculated by fate analysis, effect analysis and damage analysis to get the damage factor of the effect as a PDF(Potentially Disappeared Fraction) unit through linking potentially increased disappeared fraction. Third, damages to resources are carried out by resource analysis and damage analysis for linking the lower fate to surplus energy conception to get damage factor as a MJ(Mega Joule) unit. For the ranking of relative environment load level each other, LCIA can be carried out effectively by applying this E-score methodology to the particular emission substances. A case study has been introduced for the emission substances coming out of a tire manufacturer in Korea. It is to show how to work the methodology. Based on such study result, product-designers or producers now can apply the E-scores presented in this study to the substances of emission list, and then calculate the environment load of the product or process in advance at any time and can see the environment performance comparatively and expected to contribute to the environmental improvement in view of environmental pollution prevention.

  • PDF