• Title/Summary/Keyword: Unit Cell Model

Search Result 263, Processing Time 0.026 seconds

NUMERICAL STUDY FOR THE FULL-SCALE ANALYSIS OF PLATE-TYPE HEAT EXCHANGER USING ONE-DIMENSIONAL FLOW NETWORK MODEL and ε-NTU METHOD (판형 열교환기 Full-scale 해석을 위한 1차원 유동 네트워크 모델 및 ε-NTU 모델의 수치적 연구)

  • Kim, Minsung;Min, June Kee;Ha, Man Yeong
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.47-56
    • /
    • 2014
  • Since a typical plate heat exchanger is made up of a huge number of unitary cells, it may be impossible to predict the aero-thermal performance of the full scale heat exchanger through three-dimensional numerical simulation due to the enormous amount of computing resources and time required. In the present study, a simple flow-network model using the friction factor correlation and a thermal-network model based on the effectiveness-number of transfer units (${\varepsilon}$-NTU) method has been developed. The complicated flow pattern inside the cross-corrugated heat exchanger has been modeled into flow and thermal networks. Using this model, the heat transfer between neighboring streams can be considered, and the pressure drop and the heat transfer rate of full-scale heat exchanger matrix are calculated. In the calculation, the aero-thermal performance of each unitary cell of the heat exchanger matrix was evaluated using correlations of the Fanning friction factor f and the Nusselt number Nu, which were calculated by unitary-cell CFD model.

Multi-scale Progressive Failure Analysis of Triaxially Braided Textile Composites

  • Geleta, Tsinuel N.;Woo, Kyeongsik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.436-449
    • /
    • 2017
  • In this paper, the damage and failure behavior of triaxially braided textile composites was studied using progressive failure analysis. The analysis was performed at both micro and meso-scales through iterative cycles. Stress based failure criteria were used to define the failure states at both micro- and meso-scale models. The stress-strain curve under uniaxial tensile loading was drawn based on the load-displacement curve from the progressive failure analysis and compared to those by test and computational results from reference for verification. Then, the detailed failure initiation and propagation was studied using the verified model for both tensile and compression loading cases. The failure modes of each part of the model were assessed at different stages of failure. Effect of ply stacking and number of unit cells considered were then investigated using the resulting stress-strain curves and damage patterns. Finally, the effect of matrix plasticity was examined for the compressive failure behavior of the same model using elastic, elastic - perfectly plastic and multi-linear elastic-plastic matrix properties.

A Study on the Ultra-Low Energy Ion Implantation using Local Cell Damage Accumulation Model (국부 셀 격자 결함 모델을 사용한 극 저 에너지 이온 주입에 관한 연구)

  • Kwon, Oh-Keun;Kang, Jeong-Won;Hwang, Ho-Jung
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.9-16
    • /
    • 1999
  • We have investigated effects of local damage accumulation for ultra-low energy As and B ion implant using highly efficient molecular dynamics(MD) scheme. We simulated ion implantation by MD simulation using recoil ion approximation (RIA) method and local cell damage accumulation (LCDA) model proposed in the paper. Local damage accumulation probability function consisted of deposited energy in a unit cell, implant dose rate, target material, projectile atom, and recoil event number. The simulated results were good agreement with the experimental and other simulated results. The MDRANGE results without damage accumulation were different from SIMS data in the tail region. We also simulated 2 dimensional dopant and damage profiles using the local damage accumulation model and recoil ion approximation method.

  • PDF

Spectral Efficiency Evaluation of Coordinated Multi-point Systems Based on System Level Simulations (멀티 포인트 시스템에서 시스템 레벨 시뮬레이션에 기반을 둔 스펙트럼 효율성 검증)

  • Jung, Bang-Chul;Shin, Won-Yong;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2113-2120
    • /
    • 2011
  • In this paper, so as to improve spectral efficiency for cell-boundary users, we introduce a coordinated multi-point (CoMP) system, which is one of inter-cell cooperative transmission strategies studied in 3GPP long-term evolution-advanced (LTE-A) systems, and develop a system-level simulator to evaluate performance. To identify performance improvement of the system with inter-cell cooperative transmission, we select a 3GPP LTE system as a reference, which shows the highest performance among the existing mobile communication systems, and conduct a performance comparison. System-level simulation is performed based on widely-used OPNET tool. We implement modules including central unit (CU), CoMP eNodeB (CeNB), user equipment (UE), and multiple-input multiple-output (MIMO) channel model, while designing the inter-cell cooperative transmission system. Under WINNER wireless channel model and international telecommunication union (ITU) network model environments, we then evaluate the performance of edge users who belong to the lower 5% in terms of spectral efficiency. It is finally shown that throughput of the proposed CoMP system gets improved up to 2.5 times compared to that of the 3GPP LTE reference system.

Numerical Modeling of Fuel Cell Gasket for Sealing Performance (연료전지 스택의 기밀성 향상을 위한 가스켓 모델링과 해석 기법)

  • Kim, Heon-Young;Kim, Jung-Min;Kim, Dae-Young;Suh, Jung-Do;Yang, Yoo-Chang;Im, Cheol-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.97-100
    • /
    • 2007
  • Fuel Cell Stack performance, which is influenced by the maintenance of a constant internal environment, requires high levels of air tightness. Used for analysis, gasket for fuel cell is made of elastic rubber materials and placed over separator, and shape of deformation of a gasket affects the transformation separator and airtightness while fastening structure. Separator as made of steel sheet isn't broken under pressure but can affect gas and cool water flow by the plastic deformation process. Therefore, it is understood that assembly process is well developed in case distribution of stress and shape of deformation is shown uniformly. This study is conducted on the assumption that a fuel cell maintenance is advantageous in that conditions. In this paper, analyses of unit cell and partial model were performed and distribution of stress and shape of deformation of Gasket and separator were analyzed to evaluate the airtightness while fastening structure.

  • PDF

Influence of the inlet oxygen humidity on PEMFC performance (산소 가습이 PEMFC 성능에 미치는 영향)

  • Lee, Seo-Hee;Moon, Cheor-Eon;Ko, Dong-Soo;Choi, Gyung-Min;Kim, Duck-Jool;Jung, Ji-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.35-38
    • /
    • 2007
  • The comparisons between measured performance of lab-scale PEMFC and calculation were conducted to understand the detail phenomena of PEMFC for the various inlet oxygen humidity of cathode side. Experiments were performed at $65^{\circ}C$ operation temperature and different inlet humidity conditions such as 40%, 60% and 80%. We used the MEA manufactured by oneself which include $Nafion^{(R)}$ 112 membrane, Nafion solution 20%, and carbon paper(E-TEK). As a result of this experiment, cell performance was getting higher by increasing inlet humidity condition at cathode side because ion conductivity of electrolyte membrane is increased. A 3D CFD simulation model of PEMFC was developed using commercially available CFD code that is one of the STAR-CD module, es-pemfc under same operating conditions. Model calculations results were compared with experimental ones on the polarization curves and calculation results are in good agreement with the experimental ones. Local water distribution and current density inside PEMFC are discussed in detail.

  • PDF

Development of Predictive Growth Model of Imitation Crab Sticks Putrefactive Bacteria Using Mathematical Quantitative Assessment Model (수학적 정량평가모델을 이용한 게맛살 부패균의 성장 예측모델의 개발)

  • Moon, Sung-Yang;Paek, Jang-Mi;Shin, Il-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1012-1017
    • /
    • 2005
  • Predictive growth model of putrefactive bacteria of surimi-based imitation crab in the modified surimi-based imitation crab (MIC) broth was investigated. The growth curves of putrefactive bacteria were obtained by measuring cell number in MIC broth under different conditions (Initial cell number, $1.0{\times}10^2,\;1.0{\times}10^3$ and $1.0{\times}10^4$ colony forming unit (CFU)/mL; temperature, $15^{\circ}C,\;20^{\circ}C\;and\;25^{\circ}C$) and applied them to Gompertz model. The microbial growth indicators, maximum specific growth rate constant (k), lag time (LT) and generation time (GT), were calculated from Gompertz model. Maximum specific growth rate (k) of putrefactive bacteria was become fast with rising temperature and fastest at $25^{\circ}C$. LT and GT were become short with rising temperature and shortest at $25^{\circ}C$. There were not significant differences in k, LT and GT by initial cell number (p>0.05). Polynomial model, $k=-0.2160+0.0241T-0.0199A_0$, and square root model, $\sqrt{k}=0.02669$ (T-3.5689), were developed to express the combination effects of temperature and initial cell number, The relative coefficient of experimental k and predicted k of polynomial model was 0.87 from response surface model. The relative coefficient of experimental k and predicted k of square root model was 0.88. From above results, we found that the growth of putrefactive bacteria was mainly affected by temperature and the square root model was more credible than the polynomial model for the prediction of the growth of putrefactive bacteria.

A Study on Temperature Dependent Super-junction Power TMOSFET

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.163-166
    • /
    • 2016
  • It is important to operate the driving circuit under the optimal condition through precisely sensing the power consumption causing the temperature made mainly by the MOSFET (metal-oxide semiconductor field-effect transistor) when a BLDC (Brushless Direct Current) motor operates. In this letter, a Super-junction (SJ) power TMOSFET (trench metal-oxide semiconductor field-effect transistor) with an ultra-low specific on-resistance of $0.96m{\Omega}{\cdot}cm^2$ under the same break down voltage of 100 V is designed by using of the SILVACO TCAD 2D device simulator, Atlas, while the specific on-resistance of the traditional power MOSFET has tens of $m{\Omega}{\cdot}cm^2$, which makes the higher power consumption. The SPICE simulation for measuring the power distribution of 25 cells for a chip is carried out, in which a unit cell is a SJ Power TMOSFET with resistor arrays. In addition, the power consumption for each unit cell of SJ Power TMOSFET, considering the number, pattern and position of bonding, is computed and the power distribution for an ANSYS model is obtained, and the SJ Power TMOSFET is designed to make the power of the chip distributed uniformly to guarantee it's reliability.

Effective Longitudinal Shear Modulus of Continuous Fiber-Reinforced 3-Phase Composites (연속섬유가 보강된 3상 복합재료의 종방향 전단계수 해석)

  • Jeong, Tae-Heon;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2782-2791
    • /
    • 1996
  • The effective longitudinal shear modulus(LSM) of continuous composites is studied theoretically and numerically using 3-phase unit cell model. Circular, hexagonal and rectangular shapes of reinforced fiber are considered to predict the shear modulus as a function of elastic modulus of each phase and volume fraction of interphase and reinforced fiber. It is found that rectangular fiber shape in low fiber volume fraction($v_f$<30%) and circular fiber shape in high volume fraction($v_f$>40%) shows the higher longitudinal shear modulus. Also the obtained values of LSM for rectangular array and by numerical analysis are higher than those of hexagonal array and by theoretical analysis respectively. The reinforcing effects of interphase are more significant in cases of higher fiber volume fraction and circular fiber shape. Not only the spatial distribution and shape of reinforcing fiber but also the volume of interphase have a pronounced effects on the overall LSM. It is also found that the tangent moduous of 2-and 3-phase polymer matrix composites is insensitive to the shape and distribution of reinforcing fibers.

Purification and preliminary analysis of the ATP-dependent unfoldase HslU from the gram-positive bacterium Staphylococcus aureus

  • Jeong, Soyeon;Ha, Nam-Chul;Kwon, Ae-Ran
    • Biodesign
    • /
    • v.6 no.4
    • /
    • pp.96-99
    • /
    • 2018
  • The gram-positive bacterium Staphylococcus aureus is a common cause of abscesses, sinusitis and food poisoning. The emergence of antibiotic-resistant strains has caused significant clinical issues worldwide. The HslU-HslV complex was first identified as a prokaryotic homolog of eukaryotic proteasomes. HslU is an unfoldase that mediates the unfolding of the substrate proteins, and it works with the protease HslV in the complex. To date, the protein complex has been mostly studied in gram-negative bacteria. In this study, we report the purification and crystallization of the full-length HslU from S. aureus. The crystal diffracted X-rays to a $3.5{\AA}$ resolution, revealing that the crystals belong to space group $P2_1$, with unit cell parameters of a = 166.5, b = 189.6, $c=226.6{\AA}$, and ${\beta}=108.1^{\circ}$. We solved the phage problem by molecular replacement using the structure of HslU from Haemophilus influenzae as a search model. The cell content analysis with this molecular replacement solution revealed that 24 molecules are contained in the asymmetric unit. This structure provides insight into the structural and mechanistic difference of the HslUV complex of gram-positive bacteria.