• 제목/요약/키워드: Unimolecular

검색결과 28건 처리시간 0.026초

Ab Initio Quantum Mechanical Study for the Photolysis and Unimolecular Decomposition Reactions in the Atmosphere of CF₃OH

  • 김승준;송현섭
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권12호
    • /
    • pp.1493-1500
    • /
    • 1999
  • The electronic transitions from the ground state to low-lying excited states of CF₃OH have been investigated using high level ab initio quantum mechanical techniques. Also the possible photodissociation procedures of CF₃OH have been considered. The highest level employed in this study is TZP CCSD(T) level of theory. The possible four low-lying excited states can result by the excitation of the lone pair electron (n) in oxygen to σ$^*$ molecular orbital in C-O or O-H bond. The vertical transition (n → σ$^*$) energy is predicted to be 220.5 kcal/mol (130 nm) at TZ2P CISD level to theory. The bond dissociation energies of CF₃OH to CF₃O +H and CF₃+OH have been predicted to be 119.5 kcal/mol and 114.1 kcal/mol, respectively, at TZP CCSD level of theory. In addition, the transition state for the unimolecular decomposition of CF₃OH into CF₂O + HF has been examined. The activation energy and energy separation for this decomposition have been computed to be 43.6kcal/mol and 5.0 kcal/mol including zero-point vibrational energy corrections at TZP CCSD(T) level of theory.ed phenols were also estimated.

반응 경로의 일의적 함수 (제 1 보). 정의 및 근사 (A Unique Function of Reaction Path (I). Definition and Approximation)

  • 김호징;장효원
    • 대한화학회지
    • /
    • 제32권2호
    • /
    • pp.94-102
    • /
    • 1988
  • principle of least motion의 정량적 표현을 제시하였다. potential energy surface상의 주어진 반응 경로에 대하여 전자 위치 변수의 함수, 그 함수의 norm과 반응 경로 평균 에너지를 일의적으로 정의하였고, 그들의 성질을 검토하였다. 함수의 norm과 평균 에너지를, 일분자 이성질체화 반응의 허용된 경로를 판별하는 척도로 사용할 수 있음을 제안하였다. 대칭성을 가진 분자에 대해서 계산하지 않고 허용된 경로를 판별하였으며 Woodward-Hoffmann 규칙의 적용과 같은 결과를 얻었다

  • PDF

Energy Transfer between Calixarene and Naphthalene

  • Kook, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권8호
    • /
    • pp.1111-1115
    • /
    • 2002
  • The photoluminescence of calixarene crystals has been studied as functions of temperature, time, and concentration. The vibronic bands shift to longer wavelength and become significantly sharper as temperature decreases. The experimental results r eveal that the structural transformation occur during the annealing process. Time-resolved spectra of calixarene at 12 K are monitored. Spectral features, which demonstrate characteristic of energy transfer processes, are not observed. The depopulation of excited state density is mainly controlled by unimolecular decay process dominating other decay processes. The lifetime was found to be 2.6 $\pm$ 0.1 ns. For the case of calixarene mixed with naphthalene, the fluorescence spectrum shows that the band centered at 340 nm lies 2840 $cm^{-1}$ below the relatively broad 310 nm band found for calixarene crystals. The spectra also exhibit that the emission intensity increases with increasing calixarene concentration. The results are evident that the calixarene emission is quenched by the naphthalene. Phosphorescence of calixarene mixed with naphthalene crystals is observed to determine whether the emission is due to naphthalene. The phosphorescence peaks were compared with the ground-state vibrational frequencies of naphthalene and found to be in good agreement. The results indicate that inter-molecular energy transfer occurs between calixarene and naphthalene.

An ab initio Study on the Molecular Elimination Reactions of Methacrylonitrile

  • Oh, Chang-Young;Park, Tae-Jun;Kim, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권8호
    • /
    • pp.1177-1184
    • /
    • 2005
  • Ab initio quantum chemical molecular orbital calculations have been performed for the unimolecular decomposition of methacrylonitrile ($CH_3C(CN)=CH_2$), especially for HCN and $H_2$ molecular elimination channels. Structures and energies of the reactants, products, and relevant species along the individual reaction pathways were determined by MP2 gradient optimization and MP4 single point energy calculations. Direct four-center elimination of HCN and three-center elimination of H2 channels were identified. In addition, H or CN migration followed by HCN or H2 elimination channels via the methylcyanoethylidene intermediate was also identified. Unlike the case of crotonitrile previously studied, in which the dominant decomposition process was the direct three-center elimination of HCN, the most important reaction pathway should be the direct threecenter elimination of $H_2$ in the case of methacrylonitrile.

인삼사포닌 및 인삼수용성 추출물이 비둘기 가슴근육으로부터 분리된 Malate Dehydrogenase에 미치는 안정화효과 (Stabilizing Effect of Ginseng Saponin and Water Extract on Malate Dehydrogenase from Pigeon Breast Muscle)

  • 김두하;신문희;홍순근
    • Journal of Ginseng Research
    • /
    • 제7권1호
    • /
    • pp.88-93
    • /
    • 1983
  • Studies were carried out to elucidate the protein stabilizing effect of ginseng. Malate dehydrogenase (EC 1.1.1.37) was used as a protein and the rate constant of the enzyme inactivation was determined under the heat denaturation condition. There was an optimum pH for the enzyme stability, the rate constant of the enzyme inactivation was minimum at BH 8.8. The rate constant was increased at lower and higher pH regions than the optimum pH. The inactivation reaction followed the Arrehnius law and the activation energy was measured as 36.8kcal/mole. The reaction rate was not affected by the enzyme concentration and thus it was assumed to be unimolecular first order reaction. The water extract of red ginseng decreased the rate constant of Malate dehydrogenate under heat inactivation condition to stabilize the enzyme activity. Purified ginseng saponin also stabilized the enzyme against heat inactivation.

  • PDF

Thermal Unimolecular Decomposition Reactions of Ethyl Bromide at 724.5 - 755.1$^{\circ}$K

  • Tae-Joon Park;K. H. Jung
    • Bulletin of the Korean Chemical Society
    • /
    • 제1권1호
    • /
    • pp.30-35
    • /
    • 1980
  • The thermal decomposition reaction of ethyl bromide was studied in the temperature range of 724.5-$755.1^{\circ}K$. Pressure dependence of the reaction was observed in its fall-off region. A theoretical evaluation of the rate constants was carried out adopting RRKM formulation in the region and was compared with the experimental observation.The validity of theory was also reevaluated by using the observed results. The observed activation energy in this study and Arrhenius A-factor were 51.7 kcal/mole and $10^{12.5}$, respectively. The small A-factror in the study was discussed in terms of the formation of a tight activated complex and the molecular elimination as a prevalent reaction mode.

PM3 Studies on the Acid-Catalyzed Hydrolysis of 1-Phenoxyethyl Propionate

  • 김찬경;이인영;정동수;이본수;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권9호
    • /
    • pp.993-999
    • /
    • 1998
  • Acid catalyzed hydrolysis of 1-phenoxyethyl propionate, Ⅰ, has been studied using the PM3 method in the gas phase. The first step of the reaction is the protonation of basic sites, three different oxygens in Ⅰ, producing three protonated species Ⅱ, Ⅲ and Ⅳ. All possible reaction pathways have been studied from each protonated structure. Changes in the reaction mechanisms have also been discussed from the results obtained by varying a nucleophile from a water monomer to a water dimer to a complex between one water molecule and an intermediate product (propionic acid or phenol) produced in the preceding unimolecular dissociation processes. Minimum energy reaction pathway is 2-W among the possible pathways, in which water dimer acts as an active catalyst and therefore facilitates the formation of a six-membered cyclic transition state. Lower barrier of 2-W is ascribed to an efficient bifunctional catalytic effect of water molecules. PM3-SM3.1 single point calculations have been done at the gas-phase optimized structure (SM3.1/PM3//PM3) to compare theoretical results to those of experimental work.

Cis-Trans Isomerization of Dimeric $[Me_2Al(μ-NH^tBu)]_2$

  • Park, Joon T.;오원태;김윤수
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권12호
    • /
    • pp.1147-1149
    • /
    • 1996
  • The trans (2a)-cis (2b) isomerization of [Me2Al(μ-NHtBu)]2 (2) has been studied by 1H NMR spectroscopy. The equilibrium has been observed to follow reversible first order kinetics with ΔH0=2.22±0.07 kJmol-1 and ΔS0=2.85±0.07 JK-1mol-1. The activation parameters for the conversion 2a→2b are ΔH1=49.7±2.3 kJmol-1 and ΔS1=-126.3±0.2 JK-1mo1-1 and for the reverse reaction 2b→2a are ΔH-1=47.5±2.3 kJmol-1 and ΔS-1=-129.1±0.5 JK-1mol-1. The isomerization is markedly accelerated in the presence of Lewis bases. A crossover experiment indicates that the isomer interconversion is a unimolecular process. The large negative entropies of activation suggest either the existence of a sterically congested intermediate or the participation of solvent in the isomerization process.

Nanostructure formation in thin films of block copolymers prepared by controlled radical polymerization

  • Voit, B.;Fleischmann, S.;Messerschmidt, M.;Leuteritz, A.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.99-100
    • /
    • 2006
  • Orthogonally protected block copolymers of based on p-hydroxystyrene were prepared with high control via nitroxy mediated radical polymerization using an alkoxyamine as an unimolecular initiator. Thin films of partially protected block copolymer were prepared by spin or dip coating. A well defined nanostructure could be observed as a result of phase separation e.g. cylinders in a matrix oriented perpendicular or parallel to the substrate. The nanostructure of the polymeric films can be defined by the block copolymer composition and it determines surface properties and allows further, selective functionalization, e.g. via click chemistry. The thin films can be designed in a way to allow a patterning based on a thermal or photochemical stimulus.

  • PDF

Thermal Formation of Polycyclic Aromatic Hydrocarbons from Cyclopentadiene (CPD)

  • Kim, Do-Hyong;Kim, Jeong-Kwon;Jang, Seong-Ho;Mulholland, James A.;Ryu, Jae-Yong
    • Environmental Engineering Research
    • /
    • 제12권5호
    • /
    • pp.211-217
    • /
    • 2007
  • Polycyclic aromatic hydrocarbon growth from cyclopentadiene (CPD) pyrolysis was investigated using a laminar flow reactor operating in a temperature range of 600 to $950^{\circ}c$. Major products from CPD pyrolysis are benzene, indene and naphthalene. Formation of observed products from CPD is explained as follows. Addition of the cyclopentadienyl radical to a CPD $\pi$-bond produces a resonance-stabilized radical, which further reacts by one of three unimolecular channels: intramolecular addition, C-H bond $\beta$-scission, or C-C bond $\beta$-scission. The intramolecular addition pathway produces a 7-norbornenyl radical, which then decomposes to indene. Decomposition by C-H bond $\beta$-scission produces a biaryl intermediate, which then undergoes a ring fusion sequence that has been proposed for dihydrofulvalene-to-naphthalene conversion. In this study, we propose C-C bond $\beta$-scission pathway as an alternative reaction channel to naphthalene from CPD. As preliminary computational analysis, Parametric Method 3 (PM3) molecular calculation suggests that intramolecular addition to form indene is favored at low temperatures and C-C bond $\beta$-scission leading to naphthalene is predominant at high temperatures.