• Title/Summary/Keyword: Uniformly conditionally integrable

Search Result 1, Processing Time 0.013 seconds

On Convergence in p-Mean of Randomly Indexed Partial Sums and Some First Passage Times for Random Variables Which Are Dependent or Non-identically Distributed

  • Hong, Dug-Hun
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.175-183
    • /
    • 1996
  • Let $S_n,n$ = 1, 2,... denote the partial sums of not necessarily in-dependent random variables. Let N(c) = min${ n ; S_n > c}$, c $\geq$ 0. Theorem 2 states that N (c), (suitably normalized), tends to 0 in p-mean, 1 $\leq$ p < 2, as c longrightarrow $\infty$ under mild conditions, which generalizes earlier result by Gut(1974). The proof follows by applying Theorem 1, which generalizes the known result $E$\mid$S_n$\mid$^p$ = o(n), 0 < p< 2, as n .rarw..inf. to randomly indexed partial sums.

  • PDF