• Title/Summary/Keyword: Uniformity ratios

Search Result 60, Processing Time 0.027 seconds

A Study on the Heat Release Analysis to Compensate the Error due to Assumption of Single Zone in Diesel Engine (디젤 기관 단일 영역 모델 열발생율 계산의 오차 보상에 관한 연구)

  • Ryu Seung-Hyup;Kim Ki-Doo;Yoon Wook-Hyeon;Ha Ji-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.572-579
    • /
    • 2006
  • Accurate heat release analysis based on the cylinder pressure trace is important for evaluating combustion process of diesel engines. However, traditional single-zone heat release models (SZM) have significant limitations due mainly to their simplified assumptions of uniform charge and homogeneity while neglecting local temperature distribution inside cylinder during combustion process. In this study, a heat release analysis based on single-zone model has been evaluated by comparison with computational simulation result using Fire-code, which is based on multidimensional model (MDM). The limitations of the single-zone assumption have been estimated, To overcome these limitations, an improved model that includes the effects of spatial non-uniformity has been applied. From this improved single-zone heat release model (Improved-SZM), two effective values of specific heat ratios, denoted by ${\gamma}_V$ and ${\gamma}_H$ in this study, have been introduced. These values are formulated as the function of charge temperature changing rate and overall equivalence ratio. Also, it is applied that each equation of ${\gamma}_V$ and ${\gamma}_H$ has respectively different slopes according to several meaningful periods during combustion progress. The heat release analysis results based on improved single-zone model gives a good agreement with FIRE-code results over the whole range of operating conditions of target engine, Hyundai HiMSEN H21/32.

Study on NOx Reduction with Multi-Perforated Tube Geometry in Integrated Urea-SCR Muffler (촉매삽입형 Urea-SCR 머플러 다공튜브 형상변화에 따른 NOx 저감 특성에 관한 연구)

  • Moon, Namsoo;Lee, Sangkyoo;Ko, Sangchul;Lee, Jeekeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1017-1026
    • /
    • 2014
  • A multi-perforated tube is generally installed between the muffler inlet and in front of selective catalytic reduction (SCR) catalysts in the integrated urea-SCR muffler system in order to disperse the urea-water solution spray uniformly and to make better use of the SCR catalyst, which would result in an increase nitrogen oxide ($NO_x$) reduction efficiency and a decrease in the ammonia slip. The effects of the multi-perforated tube orifice area ratios on the internal flow characteristics were investigated analytically by using a general-purpose commercial software package. From the results, it was clarified that the multi-perforated tube geometry sensitively affected the generation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst. To verify the analytical results, engine tests were carried out in the ESC and ETC modes. Results of these tests indicated that the larger flow model in the longitudinal direction showed the highest NOx reduction efficiency, which was a good agreement with the analytical results.

Analysis of an internal flow with multi-perforated tube geometry in an integrated Urea-SCR muffler (다공튜브 형상변화에 따른 촉매 삽입형 Urea-SCR 머플러 내부유동 해석)

  • Moon, Namsoo;Lee, Sangkyoo;Lee, Jeekeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.500-509
    • /
    • 2013
  • This study reports a numerical analysis of the internal flow characteristics of the integrated urea-SCR muffler system with the various geometries of the multi-perforated tube which is set up between the muffler inlet and in front of SCR catalysts. The multi-perforated tube is generally used to disperse uniformly the urea-water solution spray and to make better use of the SCR catalyst, resulting in the increased $NO_x$ reduction and decreased ammonia slip. The effects of the multi-perforated tube orifice area ratios on the velocity distributions in front of the SCR catalyst, which is ultimately quantified as the uniformity index, were investigated for the optimal muffler system design. The steady flow model was applied by using a general-purpose commercial software package. The air at the room temperature was used as a working fluid, instead of the exhaust gas and urea-water solution spray mixture. From the analysis results, it was clarified that the multi-perforated tube geometry sensitively affected to the formation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst.

Uniformity of Large Gypsum-cemented Specimens Fabricated by Air Pluviation Method (낙사법으로 조성된 대형 석고 고결시료의 균질성)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Cho, Yong-Soon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2008
  • The method to prepare the large cemented sand specimen for calibration chamber test by air-pluviation is investigated in this study. The uniformity of cemented specimen is evaluated by performing the CPTs, DMTs, and bender element tests in the calibration chamber. The sand particles, pre-wetted with 0.5% water content, are mixed with gypsum to provide the homogeneous coating of gypsum particles on the grain surface. It was shown that the pre-wetting of particle surface is effective to minimize the potential for segregation between sands and gypsum during air-pluviation. It was observed that the extreme void ratios ($e_{max}\;and\;e_{mix}$) of the mixture of pre-wetted sand and gypsum powder increase at lower gypsum content while those of the mixture of dry sand and gypsum decrease with increasing gypsum content. It was also shown from the test results that large cemented specimens reconstituted in calibration chamber by rainer system are quite uniform in vertical and horizontal directions.

Internal force monitoring design of long span bridges based on ultimate bearing capacity ratios of structural components

  • Hu, Ke;Xie, Zheng;Wang, Zuo-Cai;Ren, Wei-Xin;Chen, Lei-Ke
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.93-110
    • /
    • 2018
  • In order to provide a novel strategy for long-span bridge health monitoring system design, this paper proposes a novel ultimate bearing capacity ratios based bridge internal force monitoring design method. The bridge ultimate bearing capacity analysis theories are briefly described. Then, based on the ultimate bearing capacity of the structural component, the component ultimate bearing capacity ratio, the uniformity of ultimate bearing capacity ratio, and the reference of component ultimate bearing capacity ratio are defined. Based on the defined indices, the high bearing components can then be found, and the internal force monitoring system can be designed. Finally, the proposed method is applied to the bridge health monitoring system design of the second highway bridge of Wuhu Yangtze river. Through the ultimate bearing capacity analysis of the bridge in eight load conditions, the high bearing components are found based on the proposed method. The bridge internal force monitoring system is then preliminary designed. The results show that the proposed method can provide quantitative criteria for sensors layout. The monitoring components based on the proposed method are consistent with the actual failure process of the bridge, and can reduce the monitoring of low bearing components. For the second highway bridge of Wuhu Yangtze river, only 59 components are designed to be monitored their internal forces. Therefore, the bridge internal force monitoring system based on the ultimate bearing capacity ratio can decrease the number of monitored components and the cost of the whole monitoring system.

Heat (mass) transfer measurement and analysis with flows around film cooling holes and circular cylinders (막냉각홀 주위와 원형돌출봉 주위에서의 열(물질)전달의 측정과 해석)

  • Kim, B.G.;Wu, S. J.;Cho,H. H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1485-1495
    • /
    • 1997
  • The present study investigates heat/mass transfer around film cooling jets and circular cylinders to compare the characteristics of each other. Experiments are conducted to obtain the detailed heat/mass transfer coefficients of flat plate with injections through an array of holes and for flows around an array of protruding circular cylinders using the naphthalene sublimation technique. The inclination angles of cylinders are set to the same ones of jets; a, the angle between the jet and the surface is fixed at 30 deg. through the whole experiments and .betha., the angle between the projection of the jet on the surface and the direction of main stream is adjusted to 0 deg., 45 deg. and 90 deg. to investigate the effect of variation of injection angles. The influence of blowing rates of jets and those of cylinder length to diameter ratios are also investigated. The results indicate that the increase of angle .betha. influences the spanwise uniformity of heat/mass transfer remarkably for both jets and cylinders, but that variation of cylinder length to diameter ratios has weaker effects on heat/mass transfer coefficients than that of blowing rates.

Formability of Sheet Metal in Noncircular Cup Drawing(I) (for Rectangular Cross Section) (비원형 단면에 대한 판재 성형성(I) (직사각형 단면에 대하여))

  • Shin, J.H.;Kim, M.S.;Seo, D.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.84-95
    • /
    • 1994
  • The effects of punch and blank shapes in the rectangular cup drawing process are examined experimentally to improve the formabilities. For this purpose, three blank shapes which are h-bl., G-bl., and T-bl., and five punch shape factors which are the ratios of two adjacent side lengths in rectangular cross section are adopted. The constructing methods of the three blank shapes are as follows. The h-bl. is designed by slip-line theory, and the G-bl. is selected for the similar shape to the punch. The T-bl. is obtained by the drawing method which is introduced in the technical references. The five punch shape factors are selected for length/width=1, 1.25, 1.5, 1.75 and 2. The experimental procedures are performed for all the above forming conditions to investigate and compare the formabilities. As a result, it is verified experimentally that the rectangular cups drawn by the h-bl. are more ideal than those drawn by G-bl. and T-bl.. They have not only higher limiting drawing ratio, more uniformity in drawn cup heights and more ideal thickness distributions, but also need relatively less maximum drawing forces.

  • PDF

Construction of Magnetic Resonance Imaging Inside-out probes for Internal Imaging (핵자기공명 영상법을 위한 내부 영상용 뒤집음-탐침의 제작)

  • Ko, R.K.;Lee, D.H.;Jeong, E.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.78-81
    • /
    • 1995
  • In imaging the samples or human internal organs in a tube shape, general RF-probe types (that encircles a sample or places on top of the sample) are usually unsuitable for the internal imaging due to the degradation of signal-to-noise ratios(SNR's). In the present study the inside-out probes for Magnetic Resonance Imaging (MRI) have been constructed in the three different shapes such as an anti-solenoidal, a saddle and a dual surface types which are positioned as close to the area as possible by putting the probe inside the tubelike sample to improve filling factor. RF-field distributions have also been calculated depending upon the geometrical changes of anti-solenoid probes. Moreover, the performance of the inside-out probes has been checked by measuring SNR's of the images acquired. The inside-out probes constructed in this study produced better SNR's and rf-field uniformity in the area close to the probes in comparing with any other commercial probes. There is a high possibility that the constructed probes in the present study are applicable to the diagnosis of human bodies.

  • PDF

Design and Analysis of Mixture Experiments for Ball Mix Selection in the Ball Milling (볼밀링에서 볼 배합비 선택을 위한 혼합물 실험계획 및 분석)

  • Kim, Seong-Jun;Choi, Jai Young;Shin, Hyunho
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.579-590
    • /
    • 2014
  • Purpose: Ball milling is a popular process for obtaining fine powders in the part and material industry. One of important issues in the ball milling is to produce particles with a uniform size. Although many factors affect uniformity of particles, this paper focuses on the choice of ball diameter. Consider a ball milling where balls can be taken with three different diameters. The purpose of this paper is to find a ball mix which minimizes the average particle size. Methods: Ball diameters are selected as 10mm, 3mm, and 0.5mm. In order to find an optimum mixing ratio, the method of mixture experiments is employed in this paper. Taguchi's signal-to-noise ratio (SNR) for smaller-the-better type is also used to analyze experimental data. Results: According to the experimental result, SNR is maximized when the ball mix is taken as either 7:3:0 or 6:4:0. Such mixing ratios can be technically validated in terms of porosity reduction. Conclusion: The ball mixing technique presented in this paper provides a useful way to improve the production efficiency with a low cost.

The Quality Characteristics of Sponge Cake Containing a Functional and Natural Product(1. Mulberry Leaf Powder) (기능성 천연물을 첨가한 스펀지 케이크의 품질 특성(1. 뽕잎 분말))

  • Choi, Gil-Young;Bae, Jong-Ho;Han, Gab-Jo
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.17 no.5
    • /
    • pp.703-709
    • /
    • 2007
  • The purpose of this study was to investigate the quality characteristics of sponge cake with various amounts of mulberry leaf powder in place of flour. The specific gravity of kneading was maintained at the different amounts of added mulberry leaf powder, which increased at ratios of 5, 10, 15, and 20 percent. The crumb decreased greatly when flour rather than mulberry leaf powder was used. As the amount of mulberry powder increased, red and yellow color decreased in both the crumb and crust. The volume and symmetry indices of the sponge cake slightly decreased when the amount of mulberry powder increased. However, uniformity was not significantly different between the samples. The specific volume of the cake decreased when the amount of the mulberry leaf powder increased. In addition, mulberry leaf powder increased the degrees of hardness and gumminess of cake, but did not show any differences for the cohesiveness and springiness of the cake texture. In the consumer acceptability test, the most favorable taste and odor were attained at the 10 percent level of mulberry leaf powder.

  • PDF