• Title/Summary/Keyword: Uniform porosity

Search Result 163, Processing Time 0.023 seconds

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.

Geometry impact on the stability behavior of cylindrical microstructures: Computer modeling and application for small-scale sport structures

  • Yunzhong Dai;Zhiyong Jiang;Kuan-yu Chen;Duquan Zuo;Mostafa habibi;H. Elhosiny Ali;Ibrahim Albaijan
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.443-459
    • /
    • 2023
  • This paper investigates the stability of a bi-directional functionally graded (BD-FG) cylindrical beam made of imperfect concrete, taking into account size-dependency and the effect of geometry on its stability behavior. Both buckling and dynamic behavior are analyzed using the modified coupled stress theory and the classical beam theory. The BD-FG structure is created by using porosity-dependent FG concrete, with changing porosity voids and material distributions along the pipe radius, as well as uniform and nonuniform radius functions that vary along the beam length. Energy principles are used to generate partial differential equations (PDE) for stability analysis, which are then solved numerically. This study sheds light on the complex behavior of BD-FG structures, and the results can be useful for the design of stable cylindrical microstructures.

Numerical Analysis of River Bed Change Due to Reservoir Failure Using CCHE1D Model (CCHE1D 모형을 이용한 저수지 붕괴에 따른 하상변동 해석)

  • Son, In Ho;Kim, Byunghyun;Son, Ah Long;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.219-229
    • /
    • 2016
  • This study presents the analysis of flood and bed deformation caused by reservoir failure. The CCHE1D is used to simulate 1D non-uniform, non-equilibrium sediment transport and bed deformation. The CCHE1D deals with the adaptation length for non-equilibrium sediment, classified sediment particle for non-uniform sediment and mixing layer for the exchange with the sediment moving with the flow. The model is applied to Ha!Ha! river basin where was experienced reservoir failure in 1996 to analyze non-uniform and non-equilibrium sediment transport. The calculations are compared with morphological bed changes of pre- and post-flood. In addition, model sensitivity to main parameters involving adaptation length ($L_{s,b}$), non-equilibrium coefficient (${\alpha}_s$), mixing layer thickness (${\delta}_m$) and porosity (p') is analyzed. The results indicates that thalweg change is the most sensitive to non-equilibrium coefficient (${\alpha}_s$) among those parameters in the study area.

An Experimental Analysis of Effective Thermal Conductivity of Porous Materials Using Structural Models (구조모델을 이용한 다공성 매질의 유효열전도도 분석)

  • Cha, Jang-Hwan;Koo, Min-Ho;Keehm, Young-Seuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.91-98
    • /
    • 2010
  • The effective thermal conductivity of porous materials is usually determined by porosity, water content, and the conductivity of the matrix. In addition, it is also affected by the internal structure of the materials such as the size, arrangement, and connectivity of the matrix-forming grains. Based on the structural models for multi-phase materials, thermal conductivities of soils and sands measured with varying the water content were analyzed. Thermal conductivities of dry samples were likely to fall in the region between the Maxwell-Eucken model with air as the continuous phase and the matrix as the dispersed phase ($ME_{air}$) and the co-continuous (CC) model. However, water-saturated samples moved down to the region between the $ME_{wat}$ model and the series model. The predictive inconsistency of the structural models for dry and water-saturated samples may be caused by the increase of porosity for water-saturated samples, which leads to decrease of connectivity among the grains of matrix. In cases of variably saturated samples with a uniform grain size, the thermal conductivity showed progressive changes of the structural models from the $ME_{air}$ model to the $ME_{wat}$ model depending on the water content. Especially, an abrupt increase found in 0-20% of the water content, showing transition from the $ME_{air}$ model to the CC model, can be attributed to change of water from the dispersed to continuous phase. On the contrary, the undisturbed soil samples with various sizes of grains showed a gradual increase of conductivity during the transition from the $ME_{air}$ model to the CC model.

Theoretical buckling analysis of inhomogeneous plates under various thermal gradients and boundary conditions

  • Laid Lekouara;Belgacem Mamen;Abdelhakim Bouhadra;Abderahmane Menasria;Kouider Halim Benrahou;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.443-459
    • /
    • 2023
  • This study investigates the theoretical thermal buckling analyses of thick porous rectangular functionally graded (FG) plates with different geometrical boundary conditions resting on a Winkler-Pasternak elastic foundation using a new higher-order shear deformation theory (HSDT). This new theory has only four unknowns and involves indeterminate integral variables in which no shear correction factor is required. The variation of material properties across the plate's thickness is considered continuous and varied following a simple power law as a function of volume fractions of the constituents. The effect of porosity with two different types of distribution is also included. The current formulation considers the Von Karman nonlinearity, and the stability equations are developed using the virtual works principle. The thermal gradients are involved and assumed to change across the FG plate's thickness according to nonlinear, linear, and uniform distributions. The accuracy of the newly proposed theory has been validated by comparing the present results with the results obtained from the previously published theories. The effects of porosity, boundary conditions, foundation parameters, power index, plate aspect ratio, and side-to-thickness ratio on the critical buckling temperature are studied and discussed in detail.

Effects of Surfactants on Dispersion Behavior of Vectran® in Water(II) -Study on the Manufacture and Properties of Wet-laid Nonwoven Fabrics- (Vectran®의 수중 분산 거동에 미치는 계면활성제의 영향(II) - 습식부직포의 제조와 그 물성연구 -)

  • Kang, Yoo-Jung;Song, Sun-Hye
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.327-333
    • /
    • 2015
  • This paper aims to manufacture nonwoven fabrics by wet-laid technology using Vectran$^{(R)}$ one of the highly favoured high-performace fiber. In previous study, a novel evaluation on fiber dispersion was studied to select optimum surfactant by the need for the control of fiber dispersion in water with reference to wet-laid nonwoven technology. 3 Types of sulfonate anionic surfactants were chosen and added in a stage of agitation to improve dispersion behavior of fibers in water. It was observed that the state of fiber dispersion in water affected various properties of nonwovens, including appearance, physical properties, and mechanical properties. Nonwoven added SDBS was uniform in web structure, thickness and weight. Its average pore was small in size and consisted of fine pores and the value of porosity was high. Further, the difference of tensile value between 2 directions was the least. Consequentially, as the dispersion behavior of fiber increases, nonwoven shows more balanced and uniform physical properties in all directions.

Die Compaction and Sintering Behavior of Fe Micro-nano-powder Feedstock for Micro-PIM (마이크로 PIM용 Fe 마이크로-나노 혼합분말 피드스톡의 다이성형 및 소결거동)

  • You, Woo-Kyung;Choi, Joon-Phil;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.32-39
    • /
    • 2011
  • The present investigation was performed on the die compaction and sintering behavior of Fe micro-nano mixed powder with a mixed binder for powder injection molding. Warm die compaction of the feedstock for simulation of the static injection molding process was conducted using a cylindrical mold of 10 mm diameter at $100^{\circ}C$ under 4MPa. The die compaction of the micro-nanopowder feedstock underwent a uniform molding behavior showing a homogeneous distribution of nanopowders among the micropowders without porosity and distortion. After debinding, the powder compact maintained a uniform structure without crack and distortion, leading to a high green density of 64.2% corresponding to the initial powder loading of 65%. The sintering experiment showed that the micro-nanopowder compact underwent a near full and isotropic densification process during sintering. It was observed that the nanopowders effectively suppressed the growth of micropowder grains during densification process. Conclusively, the use of nanopowder for PIM feedstock might provide a new concept for processing a full density PIM parts with fine microstructure.

The Effects of Centrifugal Casting Conditions on the Structure and Mechanical Properties in Fabrication Development of Super Heat-Resisting Steel Pipe of HP Alloy Modified with Nb (Nb을 첨가한 HP 초내열강관의 제조개발에 필요한 원심주조 조건이 조직과 기계적성질에 미치는 효과)

  • Choi, Sang-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.566-575
    • /
    • 1994
  • The effects of varying the pouring temperature and the die preheating temperature in producing centrifugally cast HP alloy modified with Nb was evaluated on the basis of the resultant macrostructure, microstructure and hardness of these castings. Increased die preheating temperatures and pouring temperatures resulted in an increase in the thickness of the columnar dendritic zone, the primary and secondary dendrite arm spacing and the thickness of the zone of porosity at the casting I.D.(inner diameter). Lower die preheating temperature and pouring temperatures result in increased grain fineness and an increased zone of equiaxed grains. A higher hardness was achieved toward the casting O.D.(outer diameter) compared to the casting I.D., attributable to alloy segregation toward the casting I.D. and segregation differences resulting from reduced solidification cooling rates toward the casting I.D. Also, a higher hardness was realized at the cold end of the casting attributed to a more uniform distribution of carbides.

  • PDF

A Case Study on Sintering Characteristics of Yttria Stabilized Zirconia Powder Prepared by Two-Fluid Spray Drying

  • Choi, Jin Sam;Kong, Young-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.332-337
    • /
    • 2016
  • As a case study on yttria stabilized zirconia ceramics, the sintering characteristics of submicron powders and the granulation prepared by two-fluid spray drying of submicron particles were investigated. As-received powders of yttria stabilized zirconia particles were reduced to a uniform size of less than about 200 nm by repeated milling. Granulation size obtained by the two-fluid spray drying was affected by the organic matter and the primary particle size. Sintering behavior such as porosity, water absorption ratio, density, and transparency was influenced by processing conditions of the powder, and the discontinuous interfaces in a green body were reduced.

A Comparative Study on Decision of The In-Plane Permeability of the Geotextile (Geotexitile의 평면투수성 결정에 관한 비교연구)

  • 권우남;박희명;이상호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.135-143
    • /
    • 1989
  • The in-plane permeabilities for domestic geotextile products are calculated by some theoretical formulas and compared with them obtained by experiments to examine the suitability of those formulas. The results obtained are as follows: 1. It appears that the diameter of the filament yarn is larger and more uniform than that of the staple fiber according to the microscopic analysis on the geotextile 2. The in-plane permeability of the geotextile shows that the theoretical values by drag and channel theory is close to the experimental ones. 3. The porosity of the geotextile is hardly influenced by normal pressure. 4. In the case of the same thickness of the geotextile the side surface area of the filament yarn is larger than that of the staple fiber. 5. The capillary height of the geotextile shows that the theoretical values is close to the experimental ones and thick geotextile is higher than thin geotextile.

  • PDF