• Title/Summary/Keyword: Uniform flow distribution

Search Result 448, Processing Time 0.025 seconds

버너Windbox의 설계기술에 관하여

  • Han, Yong-Sik;Kim, Myeong-Bae
    • 한국연소학회:학술대회논문집
    • /
    • 1995.06a
    • /
    • pp.123-130
    • /
    • 1995
  • An experimental study for the improvement of combustion air distribution in the exit of burner windbox is carried out. Since the distribution of combustion air in the burner directly affects the stability and the shape of flame, it should be as uniform as possible. Furthermore multi-burner windbox should be designed to supply the suitable quantity of combustion air for each burner. For these purposes, thin splitting plates are installed in the windbox, which make the flow control and setup the circumferentially uniform pressure field at each windbox exit. The effect of splitters on the velocity distribution of combustion air is investigated by the use of a small sized two-burner windbox model having a dynamical similarity to the prototype. Even though not the best one, a configuration of splitters which seems to give a practically useful result is suggested.

  • PDF

Numerical Analysis for the Effect of Flow Skirt Geometry on the Flow Distribution in the Scaledown APR+ (유동 덮개 형상이 축소 APR+ 내부 유동분포에 미치는 영향에 대한 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Kim, Do Hyeong;Kang, Min Ku
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.269-278
    • /
    • 2013
  • In this study, in order to examine the applicability of computational fluid dynamics with the porous model to the analysis of APR+ (Advanced Power Reactor Plus) internal flow, simulation was conducted with the commercial multi-purpose computational fluid dynamics software, ANSYS CFX V.14. In addition, among the various reactor internals, the effect of flow skirt geometry on reactor internal flow was investigated. It was concluded that the porous model for some reactor internal structures could adequately predict the hydraulic characteristics inside the reactor in a qualitative manner. If sufficient computation resource is available, the predicted core inlet flow distribution is expected to be more accurate, by considering the real geometry of the internal structures, especially located in the upstream of the core inlet. Finally, depending on the shape of the flow skirt, the flow distribution was somewhat different locally. The standard deviation of the mass flow rate (${\sigma}$) for the original shape of flow skirt was smaller, than that for the modified shape of flow skirt. This means that the original shape of the flow skirt may give a more uniform distribution of mass flow rate at the core inlet plane, which may be more desirable for the core cooling.

A Study on the Combustion Characteristics of Turbulent Diffusion Flame Stabilized by Bluff Body (보염기에 의해 안정되는 난류확산화염의 연소특성에 관한 연구)

  • An, J.G.;Song, K.K.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.71-78
    • /
    • 1998
  • The flame stabilization and the combustion characteristics of diffusion flame formed in the wake of a cylindrical bluff body with fuel injection are studied. With the turbulence generator, the flame stability limits and ion currents were measured and analyzed. The results from this experimental study are summarized as follows. The region with highest average value of ion currents in the middle of flame is moved to the upstream side by the turbulent components of main stream. The flame mass with partially active reaction is moved fast for uniform flow and turbulence generator G3, but the flame mass with relatively slow reaction is moved slowly for turbulence generator G1. If the turbulence generator with strong turbulent component is installed, the turbulent time scale is increased with movement from main stream side to recirculation zone as well as the flame stability limits is deteriorated. Though the special dominant frequency is not appeared in the eddy which exists in flame, high frequency characteristics are appeared in uniform flow and turbulence generator G3, and low frequency characteristics are appeared in uniform flow, turbulence generator G3 and G1.

  • PDF

Numerical Study of Land/Channel Flow-field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (I) -The Effects of Land/Channel Flow-field on Current Density and HFR Distributions- (고분자전해질형연료전지의 가스 채널 최적화를 위한수치적연구(I) -가스 채널 치수가 전류밀도와 HFR 분포에 미치는영향성-)

  • Ju, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.683-694
    • /
    • 2008
  • The performance and durability of Polymer Electrolyte Fuel Cells (PEFCs) are strongly influenced by the uniformity of current density, temperature, species distributions inside a cell In order to obtain uniform distributions in them, the optimal design of flowfield must be a key factor. In this paper, the numerical study of land/channel flowfield optimizations is performed, using a multi-dimensional, multi-phase, non-isothermal PEFC model. Numerical simulations reveal more uniform current density and HFR(High Frequency Resistance) distributions and thus better PEFC performance with narrower land/channel width where the less severe oxygen depletion effect near the land region and more uniform contact resistance variation along the in-plane direction are achieved. The present study elucidates detailed effects of land/channel width and assist in identifying optimal flow-field design strategies for the operation of PEFCs.

Control effects of the flow and the aerodynamic force around the downstream cylinder by a spinning upstream cylinder in uniform flow (균일류의 회전원주 제어에 의한 유동 및 공력 제어효과에 관한 연구)

  • Bu, Jeong-Suk;Yang, Jong-Pil;Kim, Chang-Su;Sin, Yeong-Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.346-359
    • /
    • 1998
  • The aerodynamic forces and wake structure of the non-rotating downstream circular cylinder, of which the uniform freestream flow is interfered with another spinning upstream cylinder having the same diameter that is located upstream in a line have been investigated experimentally. When the spin rate of the downstream cylinder defined as the ratio of tangential surface velocity of the spinning cylinder to the freestream velocity increases gradually from zero to 1.4, the change of surface pressure distribution, aerodynamic forces of the non-rotating downstream cylinder were measured in case of several distance ratios of 1.5, 3.0, and 4.5 defined as the ratio of distance between the centers of two cylinders to the diameter. The wake flow patterns behind the cylinder were also investigated in each case. From the present experiments, it has been found that the spin rate significantly influences the aerodynamic forces and near-wake flow phenomena of the downstream cylinder in such a way that the drag increases as the spin rate and distance ratio increase and the wake width increases as the distance ratio increases.

The Effect of refrigerant pass & distribution in aluminum parallel flow heat exchanger (알루미늄 평행류 열교환기에서 냉매패스와 분배량 변화의 영향)

  • Kim, Jeong-Sik;Kim, Nae-Hyun;Kim, Kwang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3546-3552
    • /
    • 2009
  • In this study, an analysis code was created for a 190*650*25-mm (W*H*D) parallel-flow evaporator, and research was done on how to increase the heat transfer rate of aluminum PF heat exchanger for application in IDU. After varying the R410A refrigerant up-down flow to two and three passes and the distribution ratio to 1:1:1 and 1:2:2, it was determined that the two-pass flow has a 30% higher partial heat transfer rate and a 25% lower heat transfer coefficient compared to the three-pass flow. As for the distribution ratios of the three-pass flow, 1:1:1 was found to have a lower refrigerant pressure loss than 1:2:2 distribution. It was assumed, though, that the refrigerant distribution had a uniform flow and that its value was thus overestimated in the actual case of maldistribution in each pass.

The Third National Congress on Fluids Engineering: Thermal design for the vertical type oven of soldering process. (반도체 공정용 수직로 설계를 위한 열유동 제어.)

  • Jeong, Won-Jung;Kwon, Hyun-Goo;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.561-564
    • /
    • 2006
  • Because of new requirements related to the employment of SMT(Surface Mounting Technology) manufacturing and the diversity of components on high density PCB(printed circuit boards), Thermal control of the reflow process is required in oder to achieve acceptable yields and reliability of SMT assemblies. Accurate control of the temperature distribution during the reflow process is one of the major requirements, especially in lead-free assembly. This study has been performed for reflow process using the commercial CFD tool(Fluent) for predicting flow and temperature distributions. There was flow recirculation region that had a weak point in the temperature uniformity. Porous plate was installed to prevent and minimize flow recirculation region for acquiring uniform temperature in oven. This paper provided design concept from CFD results of the steady state temperature distribution and flow field inside a reflow oven.

  • PDF

A Study on Induction Heating with Forced Surface Cooling in Semi-Solid Forming Process (반용융 성형에서 강제 표면 냉각에 의한 유도 가열 방법에 관한 연구)

  • Park Joon Hong;Choi Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.97-102
    • /
    • 2005
  • The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of semi-solid material with compulsive surface cooling has been performed to obtain uniform distribution of temperature. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. By this new induction heating method, not only temperature over the whole billet become uniform, but also control of temperature is possible.

A Study on Induction Heating with Compulsive Surface Cooling in Semi-Solid Forming Process (반용융 성형에서 간제 표면 냉각에 의한 유도 가열 방법에 관한 연구)

  • Choi, J. C.;Kim, B. M.;Choi, Y.;Park, J. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.465-468
    • /
    • 2000
  • The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of semi-solid material with compulsive surface cooling has been performed to obtain uniform distribution of temperature. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. By this new induction heating method, not only temperature over the whole billet become uniform, but also control of temperature is possible.

  • PDF

Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions (냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성)

  • Ham, Jin-Ki;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.