• Title/Summary/Keyword: Uniform control system

Search Result 409, Processing Time 0.033 seconds

WDMA protocol with collision avidance for high speed optical networks (고속 광통신망에서 충돌 회피를 위한 파장 분할 다중 액세스 프로토콜)

  • 이호숙;최형원;박성우;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.664-674
    • /
    • 1996
  • In high speed multi-wavelength networks, retransmission overhead due to desination conflict or control packet collision is one factor of performance degration because signal prpagation delay is much larger than the transmission time of data packet. In this paper, an efficient WDMA protocol with a collision avoidance mechanism is proposed for high speed WDM single-hop network with a passive star topology. In proposed protocol, each node has cource queues and routing table to store souting informatio. This architecture makes is possible to avoid any kind of collision when a node reserves the channel to transmit a data packet. High system thoughput and channel utilization can be achieved by proposed protocol since there are no discarded packets caused by any collision at transmission time. The performance of proposed protocol is evaluated in term of throughput and delay with variations in offered load. Simulation results show that the proposed protocol has superior performance to convertional protocols under nonuniform traffic as well as uniform traffic.

  • PDF

A Profile Tolerance Usage in GD&T for Precision Manufacturing (정밀제조를 위한 기하공차에서의 윤곽공차 사용)

  • Kim, Kyung-Wook;Chang, Sung-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.145-149
    • /
    • 2017
  • One of the challenges facing precision manufacturers is the increasing feature complexity of tight tolerance parts. All engineering drawings must account for the size, form, orientation, and location of all features to ensure manufacturability, measurability, and design intent. Geometric controls per ASME Y14.5 are typically applied to specify dimensional tolerances on engineering drawings and define size, form, orientation, and location of features. Many engineering drawings lack the necessary geometric dimensioning and tolerancing to allow for timely and accurate inspection and verification. Plus-minus tolerancing is typically ambiguous and requires extra time by engineering, programming, machining, and inspection functions to debate and agree on a single conclusion. Complex geometry can result in long inspection and verification times and put even the most sophisticated measurement equipment and processes to the test. In addition, design, manufacturing and quality engineers are often frustrated by communication errors over these features. However, an approach called profile tolerancing offers optimal definition of design intent by explicitly defining uniform boundaries around the physical geometry. It is an efficient and effective method for measurement and quality control. There are several advantages for product designers who use position and profile tolerancing instead of linear dimensioning. When design intent is conveyed unambiguously, manufacturers don't have to field multiple question from suppliers as they design and build a process for manufacturing and inspection. Profile tolerancing, when it is applied correctly, provides manufacturing and inspection functions with unambiguously defined tolerancing. Those data are manufacturable and measurable. Customers can see cost and lead time reductions with parts that consistently meet the design intent. Components can function properly-eliminating costly rework, redesign, and missed market opportunities. However a supplier that is poised to embrace profile tolerancing will no doubt run into resistance from those who would prefer the way things have always been done. It is not just internal naysayers, but also suppliers that might fight the change. In addition, the investment for suppliers can be steep in terms of training, equipment, and software.

The Crystal Growth of $Bi_{12}GeO_{20}$ Single Crystal by the CZ Technique with New Weighing Sensor (II) (새로운 무게센서에 의한 $Bi_{12}GeO_{20}$ 단결정 육성연구(II))

  • 장영남;배인국
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.30-38
    • /
    • 1998
  • A new frequency weighing sensor was applied to grow Bi12GeO20 crystals in the auto-di-ameter control system of Czochralski method. The rotation rate was varied in the range of 23 to 21 rpm to preserve flat interface in a given heat configuration. To prevent the constitutional super-cooling from the evaporation loss, 105% stoichiometric amount of Bi2O3 was employed, equivalent to 6.18 molar ratio of Bi2O3 to GeO2. Transparent and light brown Bi12GeO20 single crystal in uniform diameter was grown. The dislocation density was determined to be 103/cm2 corresponding to the optical quality in commercial applications. The grown crystal measured diameter 25 mm and length 70 mm and the preferred growth direction was confirmed to be <110>.

  • PDF

A Study on Relationship of Flow coefficient and Valve Type for Design of Butterfly Valve (Butterfly Valve 설계를 위한 Valve Type과 유량 계수의 관계에 대한 연구)

  • Oh, Seung-Hwan;Lee, Young-Hun;Kang, Hyeung-Geol;Song, Xue-Guan;Kang, Jung-Ho;Park, Young-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.373-377
    • /
    • 2006
  • The valve is used on control of flow and hydraulic in a ship. Flow coefficient of valve importance in the design of valve. In this paper, three-dimensional computer simulations by commercial code CFX were conducted to observe the value type and to measure valve flow coefficient when valve with various angles and uniform incoming velocity were used in a piping system. By contrast, a group of experimental data is used to compare with the data obtained by CFX simulation to investigate the validity of numerical method.

  • PDF

A Study on Relationship of Flow coefficient and Valve Type for Design of Butterfly Valve (버터플라이 밸브 설계를 위한 밸브 형과 유량 계수와의 관계)

  • Oh, Seung-Hwan;Lee, Young-Hun;Kang, Hyeung-Geol;Song, Hak-Guan;Kang, Jung-Ho;Park, Young-Chul
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.49-53
    • /
    • 2007
  • The valve is used on control of flow in a ship. Flow coefficient of valve is very importance in the design of valve. In this paper, three-dimensional computer simulations by commercial code CFX were conducted to observe the valve type and to measure flow coefficient when valves with various angles and uniform incoming velocity were used in a piping system. By contrast, a group of experimental data is used to compare with the data obtained by CFX simulation to investigate the validity of numerical method.

Control Effects of the Hydrodynamic Force of the Submerged NACA0018 arranging in a Row in a Uniform Stream (균일흐름 중에 놓인 병렬구조를 가진 몰수형 NACA0018의 간격변화가 유체력 제어효과에 미치는 영향)

  • Gim, Ok-Sok;Shon, Chang-Bae;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.325-330
    • /
    • 2010
  • An open water rudder test was carried out to figure out the flow characteristics around a twin rudder at $Re=1.5{\times}10^4$. In the analysis, the unique characteristics of a twin rudder, which affects rudder forces, were explained. The analysis includes varying angles of attack from 10 to 30 degrees. In this paper, the measured results have been compared with each other to predict the performance characteristics of a twin rudder's 2-dimensional section by 2-frame grey level cross correlation PIV method. The length L=0.75C between upper and lower rudders could be defined as the critical length.

A Comparative Study of Vessel Trajectory Prediction Error based on AIS and LTE-Maritime Data (AIS 및 LTE-Maritime 데이터를 활용한 항적 예측 오차 비교연구)

  • Ji Hong, Min;Seungju, Lee;Deuk Jae, Cho;Jong-Hwa, Baek;Hyunwoo, Park
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.576-584
    • /
    • 2022
  • AIS is widely utilized in vessel traffic services for marine traffic safety. In 2021, Korea deployed the high-speed maritime wireless communication system (LTE-Maritime) on the sea following IMO's proposal for the introduction of e-Navigation. In this paper, vessel trajectory data from AIS and LTE-Maritime were used for vessel trajectory prediction to compare and analyze the two systems. The results show that the trajectory prediction error of LTE-Maritime was smaller than that of AIS due to the granular and uniform data provided by LTE-Maritime. Additionally, it was revealed that time interval is the most important factor influencing the errors in trajectory prediction, with the prediction error of LTE-Maritime growing at a slower rate of 17% than AIS. This research contributes to the literature by quantitatively comparing AIS and LTE-Maritime systems for the first time.

Damage Analysis of Train Rail Fishplate (전동차 선로 이음매 판의 파손 해석)

  • Seo-Hyun Yun;Byoung-Chul Choi;Ki-Hang Shin;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.341-347
    • /
    • 2023
  • The subway is one of the most common and important means of transportation in modern society. In order to use the subway safely, tracks are necessary, but trains are prone to derailment and collisions. In order for the train to run safely on the track, the fishplate that connects the line connection is used. The damaged railway was a fishplate for connecting subway lines used for 11 years, and damage analysis and countermeasures were presented. Beach marks were observed on both fracture surfaces, and striations appeared at the range of crack propagation. The damaged part is Cr carbide, which has a higher hardness than the base metal, and is judged to be embrittled and destroyed by fatigue. The SM50C fishplate was subjected to a cyclic stress of about 59% of the upper limit of tensile-compression fatigue limit, but inclusions were the cause of failure. In order to prevent fatigue failure of the SM50C steel fishplate, the occurrence of inclusions should be minimized and processed to have a homogeneous structure when manufacturing the fishplate. In addition, compressive residual stress is given through surface modification such as peening to control crack generation. It is necessary to minimize the change in shape that can become a stress concentration part along with accurate fastening of the bolt, and to design the stress distribution to be as uniform as possible.

A Study on Development of Superconducting Wires for a Fault Current Limiter (한류기용 초전도 선재개발에 관한 연구)

  • Hwang, Kwang-Soo;Lee, Hun-Ju;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.279-290
    • /
    • 2022
  • A superconducting fault current limiter(SFCL) is a power device that exploits superconducting transition to control currents and enhances the flexibility, stability and reliability of the power system within a few milliseconds. With a high phase transition speed, high critical current densities and little AC loss, high-temperature superconducting (HTS) wires are suitable for a resistive-type SFCL. However, HTS wires due to the lack of optimization research are rather inefficient to directly apply to a fault current limiter in terms of the design and capacity, for the existing method relied the characteristics. Therefore, in order to develop a suitable wire for an SFCL, it is necessary to enhance critical current uniformity, select optimal stabilizer materials and conducted research on the development of uniform stabilizer layering technology. The high temperature superconducting wires manufactured by this study get an average critical current of 804 A/12mm-width at the length of 710m; therefore, conducted research was able to secure economic performance by improving efficiency, reducing costs, and reducing size.

A Study on Operational Patterns for Drone Reconnaissance and Attack Missions (정찰 및 공격 임무 수행 드론의 운용양상에 관한 연구)

  • Jong su Park;Keon Young Yi
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.3
    • /
    • pp.18-28
    • /
    • 2023
  • The threat of drones is widely occurring not only in the military field but also for important national facilities such as airports and nuclear power plants. Drones are very diverse in types and control methods, so it is not easy to have a uniform defense method and system, and with the development of drone technology, the war paradigm using drones as weapons is also changing. In particular, advances in drone technology are improving the efficiency and accuracy of reconnaissance and attack missions. Nevertheless, it is very difficult to secure research cases on military operation of drones due to difficulties in obtaining information on military operations. Therefore, in this study, we try to create basic data that can effectively establish a plan for performing reconnaissance and attack missions by deriving each operational aspect through analysis of operation cases of reconnaissance and attack drones.

  • PDF