• Title/Summary/Keyword: Uniform Wall Thickness

Search Result 71, Processing Time 0.029 seconds

지지부 위치와 벽면 두께변화에 따른 구형 인공위성 추진제 탱크의 강도해석

  • 한근조;전언찬;김중완;안성찬;심재준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.528-532
    • /
    • 1997
  • The structure of satellite was of six parts of control system, power system, thermal control system, remote measurement command system, propellant system and thrust system. In these parts, propellant system consists of propellant tank and thrust device. What we want to perform is optimum design to minimaize the weight of propellant tank. In order to design optimal propellant tank, several parameters should be adopted form the tank geometry like the relative location of the lug and variation of the wall thickness. So the analysis was executed by finite element analysis for finding optimal design parameters. The structure was devided into 3 parts, the initial thickness zone, the transitional zone, and the weak zone,whose effects on the pressure vessel strength was investigated. Finally the optimal lug location and the three zone thickness were obtained and the weight was compared with the uniform thickness vessel.

  • PDF

The effect of wall heat conduction on local convection heat transfer from a cylinder in cross flow of air (원형 실린더 주위의 공기로 국소 대류 열전달에 대한 열전도의 영향)

  • 이승홍;이억수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.440-448
    • /
    • 1998
  • This paper considers the influence of circumferential wall heat conduction for the case of forced convection around a circular cylinder in cross flow of air. Keeping uniform heat generation from the inner surface of the cylinder in radial direction, heat is transferred by wall conduction in the circumferential direction due to the asymmetric nature of the temperature distribution of the cylinder and by convection around the perimeter of the cylinder. The wall conduction depends on conductivity of the cylinder and size of the cylinder radius and thickness and affects the local convective heat transfer rate significantly for geometrically similar surfaces and flow conditions. A nondimensional conjugation parameter K. (=k$_t$R/k$_w$b) has been used to characterize the effect of the circumferntial wall heat conduction. The small values of conjugation parameter K are found to be associated with large effect of wall conduction on the local convective heat transfer rate.

  • PDF

The optimal array of various heat-generating heaters located on one wall of a vertical open top cavity (상부가 개방된 수직 캐비티내의 한쪽면에 배열된 다양한 발열조건을 갖는 발열체의 최적배열)

  • Riu, Kap-Jong;Choo, Hong-Lock;Choi, Byung-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.15-23
    • /
    • 1997
  • An experimental investigation of two-dimensional steady natural convection cooling in a vertical open top cavity with conducting side walls of finite thickness is presented. The various heat-generating discrete heaters are located on one vertical wall of the cavity. When each heater dissipates different amount of power, the purpose of the work is to obtain the optimal array condition of the heaters. The four cases of non-uniform heating conditions are considered. The temperature fields in the cavity were visualized by the interferometer and local temperatures of the vertical wall were measured by thermocouples. The heaters were arranged in two configurations: flush-mounted on a vertical wall or protruding from the wall about 4.5 mm. The vertical wall was constructed out of copper or epoxy-resin sheet. Experiments have been conducted for air with constant Prandtl number(Pr=0.7), the aspect ratio of 4.6, 7.5, 9.5, power input in the range of 0.9 W ~ 4.2 W. For the enhancement of the cooling effectiveness, the upper and lower of vertical wall would give the better position for the heaters of higher heat flux.

A Study on Combined Heat Transfer in a Enclosure with a Block (밀폐공간내의 피가열체 존재시 복합열전달에 관한 연구)

  • Hong, Seong-Kook;Ryou, Hong-Sun;Hong, Ki-Bae;Chae, Soo
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2000
  • This paper numerically deals with combined heat transfer in a enclosure with a block. The block affected by hot wall is located centrally in the enclosure with a radiating gray gas. The discrete ordinate method(DOM) was used for solving the radiative transfer equation. Both laminar and turbulent cases were investigated for various Rayleigh number and standard k-$\varepsilon$ model was adopted to turbulent case. The effects of optical thickness, wall emissivity and fluid-solid thermal conductivity ratio are investigated on the flow and temperature fields. This study shows that as the wall emissivity decreases, the temperature distribution gradually becomes uniform and the heat transfer is reduced in enclosure. It is expected that this study can help to design the energy system related to the combined heat transfer and operate it safely.

  • PDF

Consideration of thickness change during progressive drawing process of automotive coupler parts(AL5052-H32) (자동차 커플러 부품(Al5052-H32)의 프로그래시브 드로잉 공정 시 두께 변화 고찰)

  • Park, Sang-Byung;Yun, Jae-Woong
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.37-43
    • /
    • 2020
  • Progressive drawing processing is one of the manufacturing processes used to mass-produce a variety of products on the industrial site. In this study, the goal is to achieve a uniform product thickness of at least 1.3mm by reducing the wall thickness of the coupler parts used in automotive air conditioning systems to within 15% using A5052-H32 materials. The progressive die was designed using Blank's law of volume invariance. Due to the characteristics of the drawing process, the material thickness in the punch R part decreases and the thickness in the die R part increases. When designing the progressive die of the coupler part, an ironing method, a push back method, and a stand-alone die pad method were applied to each process to design a mold in consideration of the drawing rate and to artificially adjust the thickness change. The suitability of the method used in die design was investigated by measuring the thickness change of forming parts for each process. In the final part, it was confirmed that the thickness measurement values of the five regions of a radial line were implemented as 1.34-1.36 mm.

A Study on Electron Beam Dosimetry for Chest Wall Irradiation (흉곽(胸廓)의 전자선(電子線) 조사시(照射時) 선량분포(線量分布)에 관(關)한 연구(硏究))

  • Kang, Wee Saing;Koh, Kyoung Hwan;Ha, Sung Whan;Park, Charn Il
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.41-45
    • /
    • 1983
  • To obtain 7 MeV electron beam which is suitable for treatment of the chest wall after radical of modified radical mastectomy, the authors reduced the energy of electron beam by means by Lucite plate inserted in the beam. To determine the proper thickness of the Lucite plate necessary to reduce the energy of 9 MeV electron beam to 6 MeV, dosimetry was made by using a parallel plate ionization chamber in polystyrene phantom. Separation between two adjacent fields, 7 MeV for chest wall and 12 MeV for internal mammary region, was studied by means of film dosimetry in both polytyrene phantom and Humanoid phantom. The results were as follows. 1. The average energy of 9 MeV electron beam transmitted through the Lucite plate was reduced. Reduction was proportional to the thickness of the Lucite plate in the rate of 1.7 MeV/cm. 2. The proper thickness of the Lucite plate necessary to obtain 6 MeV electron beam from 9 MeV was 1.2 cm. 3. 7 MeV electron beam, 80% dose at 2cm depth, is adequate for treatment of the chest wall. 4. Proper separation between two adjacent electron fields, 7 MeV and 12 MeV, was 5mm on both flat surface and sloping surface to produce uniform dose distribution.

  • PDF

Design Study of Engine Inlet Duct for Measurement Improvement of the Flow Properties on AIP (AIP면 유동측정 정확도 향상을 위한 가스터빈엔진 입구덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sung Don;Kim, Yong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.49-55
    • /
    • 2017
  • In this study, gas turbine engine inlet duct was designed to satisfy uniform flow at aerodynamic interface plane (AIP). Haack-series was selected as nose cone profile and duct outer radius($r_o$) was designed to satisfy to match with area change rate between the nose cone and outer duct wall by the 1-D sizing. The design object of the inlet duct wall profile which has the gradual area change rate was uniform Mach number in the core flow region and minimum boundary later thickness at the both inner nose wall and outer duct wall. The flow characteristics inside the inlet duct was evaluated using CFD. The static pressure distribution at the AIP showed uniform pattern within 0.16%. Based on Mach number profile, the boundary layer thickness was 2% of channel height. Kiel temperature rake location was decided less than 100 mm in front of nose cone where the Mach number is less than 0.1 in order to maximize the temperature probe recovery rate.

Conjugate Heat Transfer for Circular Absorber in Parabolic Trough Concentrator (PTC형 집열기의 원관형 흡수기에서의 복합열전달)

  • Chung, J.M.;Seo, T.B.;Kang, Y.H.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.81-89
    • /
    • 2000
  • In the present study, the characteristics of conductive and convective heat transfer occurred in a circular absorber of PTC (parabolic trough concentrator) for medium temperature solar energy utility were numerically investigated. A circular tube was considered as an absorber and the shape of PTC modeled in this study was based on the system that was installed in Korea Institute of Energy Research. Not only convection inside the tube but also conduction through the wall of the tube were analyzed, simultaneously. Circumferentially non-uniform heat flux that was simulated from the non-uniform solar disc model proposed by Jose was applied as thermal boundary condition on the tube surface. And, hydrodynamically fully developed laminar velocity profile was used as the inlet boundary condition and it was assumed that the working fluid was water. And, local heat fluxes at the interface of the tube and the working fluid were calculated for different wall thickness and thermal conductivity of the tube at various Reynolds number. Based on the results, the effects of thermal conduction of the tube on the local heat transfer were investigated.

  • PDF

Transient heat transfer and crust evolution during debris bed melting process in the hypothetical severe accident of HPR1000

  • Chao Lv;Gen Li;Jinchen Gao;Jinshi Wang;Junjie Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3017-3029
    • /
    • 2023
  • In the late in-vessel phase of a nuclear reactor severe accident, the internal heat transfer and crust evolution during the debris bed melting process have important effects on the thermal load distribution along the vessel wall, and further affect the reactor pressure vessel (RPV) failure mode and the state of melt during leakage. This study coupled the phase change model and large eddy simulation to investigate the variations of the temperature, melt liquid fraction, crust and heat flux distributions during the debris bed melting process in the hypothetical severe accident of HPR1000. The results indicated that the heat flow towards the vessel wall and upper surface were similar at the beginning stage of debris melting, but the upward heat flow increased significantly as the development of the molten pool. The maximum heat flux towards the vessel wall reached 0.4 MW/m2. The thickness of lower crust decreased as the debris melting. It was much thicker at the bottom region with the azimuthal angle below 20° and decreased rapidly at the azimuthal angle around 20-50°. The maximum and minimum thicknesses were 2 and 90 mm, respectively. By contrast, the distribution of upper crust was uniform and reached stable state much earlier than the lower crust, with the thickness of about 10 mm. Moreover, the sensitivity analysis of initial condition indicated that as the decrease of time interval from reactor scram to debris bed dried-out, the maximum debris temperature and melt fraction became larger, the lower crust thickness became thinner, but the upper crust had no significant change. The sensitivity analysis of in-vessel retention (IVR) strategies indicated that the passive and active external reactor vessel cooling (ERVC) had little effect on the internal heat transfer and crust evolution. In the case not considering the internal reactor vessel cooling (IRVC), the upper crust was not obvious.

Cross flow response of a cylindrical structure under local shear flow

  • Kim, Yoo-Chul;Rheem, Chang-Kyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • The VIV (Vortex-Induced Vibration) analysis of a flexible cylindrical structure under locally strong shear flow is presented. The model is made of Teflon and has 9.5m length, 0.0127m diameter, and 0.001m wall thickness. 11 2-dimensional accelerometers are installed along the model. The experiment has been conducted at the ocean engineering basin in the University of Tokyo in which uniform current can be generated. The model is installed at about 30 degree of slope and submerged by almost overall length. Local shear flow is made by superposing uniform current and accelerated flow generated by an impeller. The results of frequency and modal analysis are presented.