• Title/Summary/Keyword: Uniform Transmission Line

Search Result 61, Processing Time 0.025 seconds

Electromagnetic Coupling to Nonuniform Transmission Lines, II:Correction to the Cylindrical TEM Mode Solution (비균일 전송선의 전자기적 결합, II:원통형 TEM 모드 해의 수정)

  • 홍성용;김세윤;라정웅
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.2
    • /
    • pp.10-15
    • /
    • 1993
  • The cylindrical TEM mode solution for electromagnetic coupling to an angled two-wire transmission line is corrected by imposing some physical constraints additionally. The validity of the correction process is assured by showing that the corrected solution approaches the numerical result for the equivalent model of cascaded piecewise uniform sections.

  • PDF

Estimation for the Transfer Function of Transmission Line using the Temination and Input Impedances at Activated/Deactivated states (활성/비활성 상태에서의 종단과 입력 임피던스 변화를 이용한 전송선로의 전달함수 추정)

  • 이종헌;진용옥
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.1
    • /
    • pp.90-97
    • /
    • 1992
  • An estimation method for the amplitude and phase response of transmission line is discussed. and applied to narrow band ISDN subscriber line. The ABCD parameters of line are evaluated from four impedance values: the standard termination impedence at activated and deactivated stares, and the input impedances of line which can be estimated at each state. Estimating input impedence, the “chirp” signal is used as incident signal and noise effect can be reduced by ensemble averaging. These ABCD parameter estimations might be applicable to ether uniform or nonuniform line. Cleary the magnitude and phase response can be obtained from estimated ABCD parameters. The numerical simulation results for N ISDN subscriber line model are included, and the estimation error introduced by deviation in load impedence is also anlyzed.

  • PDF

Investigation of Large-scale Transmission Tower Grounding Grid with High Amplitude and Uniform Flowing Impulse Current

  • Yang, Shuai;Huang, Jiarui;Wei, Shaodong;Zhou, Wenjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2050-2058
    • /
    • 2018
  • Impulse characteristic of transmission tower grounding grid is needed for lightning protection of transmission line. This paper describes an outdoor experimental test facility established for large-scale grounding grid of transmission tower, made up of four impulse current generators and a circle current return electrode. The amplitude of impulse current is up to 100 kA. The results of the CDEGS simulation and GPR measurement reveal the uniform current distribution in the test arrangement. An impulse test for a square electrode with extended conductors is carried out in condition of three current waveforms with different amplitude. Based on the electrical network model and iterative algorithm method, a calculation model is proposed to simulate the impulse characteristic of large-scale grounding grid considering soil ionization. The curve of impulse resistance against the current amplitude shows the soil ionization both from the simulation and test. Deviation between the simulation and test result is less than 15%.

Signal Transmission Characteristic of PLC Coupler using Tank Circuit (Tank회로를 이용한 배전선신호 결합장치의 특성분석)

  • Kim, J.S;Kye, M.H.;Yoo, D.W.;Oh, S.C.;Kim, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.809-811
    • /
    • 1993
  • The load impedance of power lines generally varies with time, areas, and season. Also, the harmonic noises by the power electrical equipments are scattered through the power lines. The received signal level varies with the environment and is not able to detect the PLC(Power Line Carrier) signal. For this reason, it is requried for the signal transmitter to hold the received signal level uniform independently with the variation of the load impedence. In this paper, the power lines are modeled simply and a method keeping the received signal level uniform is suggested through the analysis of the signal transmission characteritics of the PLC coupler using tank circuit.

  • PDF

The Characteristics of Non-uniform Microstrip (불균일 카이크로스트립 선로의 특성)

  • 박기수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.1
    • /
    • pp.31-34
    • /
    • 1976
  • In this paper, the characteristics, especially impedance matching behavior of linearly tapered transmission line which impedance is varied linearly is analyzed. Also impedance matching of nonuniform microstrip which characteristic impedance or width of strip is varied linearly are experimentally investigated.

  • PDF

Study of Non-uniform Plasma Layer Variation with Optically-Controlled Microwave Pulses

  • Wang, Xue;Yun, Ji-Hun;Kim, Yong-K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.90-91
    • /
    • 2009
  • We study of the variation on non-uniform plasma in different layer of the semiconductor. The transient response in different plasma layer has been evaluated theoretically. The reflection function of dielectric microstrip lines resulting from the presence of plasma are evaluated by the transmission line model. The diffusion length is small compared to the absorption depth. The variation of characteristic response in plasma layer with microwave pulses which has in localized has been evaluated.

  • PDF

Study of Transient Response in Non-uniform Plasma Layer with Optically-Controlled Microwave Pulses (광-마이크로파 기반 유도플라즈마의 과도응답 특성에 관한 연구)

  • Wang, Xue;Choi, Yue-Soon;Park, Jong-Goo;Kim, Yong-K.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1174-1179
    • /
    • 2009
  • In this paper we develop the characteristic of density on non-uniform plasma in different layer of the semiconductor with optically controlled microwave pulses. The transient response of the microwave pulses in different plasma layer has been evaluated by calculating the variation of the reflection function of dielectric microstrip lines. The lines has used under open-ended termination containing optically induced plasma region, which has illuminated a laser source. The characteristics impedances resulting from the presence of plasma are evaluated by the transmission line model. The analyzes the variation of transient response in a 0.01cm layer near the surface for frequency range from 1GHz to 128GHz. The diffusion length LD is larger than compared to the absorption depth $l/_{\alpha}l$. The variation of characteristic response in plasma layer with microwave pulses which has in deferentially localized has been evaluated analytically.

Calculation of the Characteristic Impedance of Transmission Lines with Periodic Structures (주기구조가 결합된 전송선로의 특성 임피던스 계산)

  • Lim, Jong-Sik;Lee, Jae-Hoon;Lee, Jun;Han, Sang-Min;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2541-2548
    • /
    • 2010
  • This paper describes the calculation for characteristic impedance of transmission line with periodic structures such as defected ground structure (DGS) and photonic bandgap (PBG). The previous method which uses the ${\lambda}$/4 transmission line model is reviewed and its disadvantage that the calculated characteristic impedance is strongly dependent on the frequency is discussed. The characteristic impedance of transmission lines with periodic structures are calculated using the ${\lambda}$/4 transmission line model and analytic method. The calculated characteristic impedance by the latter method is an almost constant value while that from the first method depends on the frequency strongly. In addition, the characteristic impedance of the transmission line with PBG is calculated and proposed, while it has been rarely studied ever. S-parameters are obtained from the measurement using the fabricated sample as well as simulation, and used for calculating the characteristic impedances and comparison. The characteristic impedances calculated from the measured S-parameters agree well with the simulated results. It is well described that the analytic method to calculate the characteristic impedance of transmission lines on uniform dielectric structures can be applied successfully to the transmission lines with periodic structures such as DGS and PBG.

Behaviour and design of guyed pre-stressed concrete poles under downbursts

  • Ibrahim, Ahmed M.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.339-359
    • /
    • 2019
  • Pre-stressed concrete poles are among the supporting systems used to support transmission lines. It is essential to protect transmission line systems from harsh environmental attacks such as downburst wind events. Typically, these poles are designed to resist synoptic wind loading as current codes do not address high wind events in the form of downbursts. In the current study, the behavior of guyed pre-stressed concrete Transmission lines is studied under downburst loads. To the best of the authors' knowledge, this study is the first investigation to assess the behaviour of guyed pre-stressed concrete poles under downburst events. Due to the localized nature of those events, identifying the critical locations and parameters leading to peak forces on the poles is a challenging task. To overcome this challenge, an in-house built numerical model is developed incorporating the following: (1) a three-dimensional downburst wind field previously developed and validated using computational fluid dynamics simulations; (2) a computationally efficient analytical technique previously developed and validated to predict the non-linear behaviour of the conductors including the effects of the pretension force, sagging, insulator's stiffness and the non-uniform distribution of wind loads, and (3) a non-linear finite element model utilized to simulate the structural behaviour of the guyed pre-stressed concrete pole considering material nonlinearity. A parametric study is conducted by varying the downbursts locations relative to the guyed pole while considering three different span values. The results of this parametric study are utilized to identify critical downburst configurations leading to peak straining actions on the pole and the guys. This is followed by comparing the obtained critical load cases to new load cases proposed to ASCE-74 loading committee. A non-linear failure analysis is then conducted for the three considered guyed pre-stressed concrete transmission line systems to determine the downburst jet velocity at which the pole systems fail.

Microwave Filter Design using Tapered Transmission Line Theory (테이퍼 전송선 이론을 이용한 마이크로파 여파기 설계)

  • Gwon, Jin-Uk;Choe, Hyeong-Seok;Jang, Ho-Seong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.3
    • /
    • pp.28-34
    • /
    • 2000
  • In this paper, we derive a spectral function and a new impedance profile of non-uniform tapered transmission lines by applying the Fourier transform to a linearized Riccati equation. We compensate the error which is from a linearized Riccati equation by adding a Taylor series to the impedance profile. Added terms remove discontinuities In the impedance profile at both ends of the non-uniform section. We show that a calculated spectrum approaches to a target spectrum of filter by an iterative method and numerical examples are given to illustrate the role of the phase function. As the design method which is shown in present paper provides a excellent adaptability for the design of non-uniform tapered transmission lines, the present method can be applied to design filters and impedance matching circuits with various passband characteristics.

  • PDF