• Title/Summary/Keyword: Uniform Thickness

Search Result 1,054, Processing Time 0.019 seconds

Rolling Process Automation For Uniform Thickness of Dough Sheet of Ramen Noddles (라면 면대의 균일한 두께를 위한 압연공정 자동화)

  • Yoo, Dong-Sang;Yoo, Byung-Kook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.97-103
    • /
    • 2012
  • The basic processing unit for instant ramen noodles includes mixing, rolling, boiling, frying, cooling, and packing processes. For uniform thickness of dough sheets in rolling process, the roll-gap in rolling process needs to keep uniform thickness of flour sheets in spite of different kinds of raw materials. In this paper, we have developed a roll gap adjustment system using a PLC (Programmable Logic Controller) with a touch panel and an AC servo-mechanism to make dough sheets with a good gluten starch-network structure and uniform thickness and to contribute to process standardization by transferring from tacit knowledge of skilled workers to explicit knowledge. The developed system can adjust the roll gap in units of 0.01mm and correspond to various product items which have different thickness specification by recalling the presetting values of the desired thickness from database.

Deformation Characteristics of Miniature Tensile Specimens of a SA 508 C1.3 Reactor Pressure Vessel Steel

  • Byun, Thak-Sang;Chi, Se-Hwan;Hong, Jun-Hwa;Jeong, Ill-Seok;Hong, Sung-Yull
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.182-187
    • /
    • 1996
  • Deformation characteristics of miniature plate tensile specimens have been studied to develop the thickness requirement and a correlation to estimate the mechanical properties of bulk material from miniature specimen data. The material used was a SA 508 C1.3 reactor pressure vessel steel and the thicknesses of miniature tensile specimens varied from ().12 m to 2 mm. The effects of thickness on the tensile deformation properties such as strength, ductility, and necking characteristics were analyzed. The yield and ultimate tensile strengths were independent of specimen thickness when the thickness was larger than about 0.2 mm. The uniform and total elongations decreased as the specimen thickness decreased. It was also observed that the uniform strain component in the width direction decreased with decrease in the specimen thickness, however, that in the thickness direction was rather constant in total thickness range studied. Based on this observation and a relationship between the necking angle and the ratio between strain components, a correlation between the uniform elongations of miniature specimen and standard specimen was derived. The uniform elongations calculated by this new correlation agreed well with the measured values.

  • PDF

Shear Spinning of Ti-6Al-4V Alloy at Hot Working Temperature (Ti-6Al-4V 합금의 열간 전단 스피닝)

  • Lee, H.S.;Song, Y.B.;Hong, S.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.432-438
    • /
    • 2011
  • A method for estimating the shear spinnability is suggested, and it was applied to sheets of Ti-6Al-4V alloy for estimation of shear spinnability at hot working temperature. The effective working temperature was $850^{\circ}C$ or above. The hot spinning operation was carried out in two steps of shear spinning. The reduction of thickness at the first step was 50% and 45% at the second, and the overall reduction of thickness was 72.4%. The cone spinning process could produce a uniform wall thickness with only a few percent tolerance, proving itself appropriate for making cones of Ti-6Al-4V alloy with uniform wall thickness.

Dielectric Characteristics of Magnetic Tunnel Junction

  • Kim, Hong-Seog
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • To investigate the reliability of the MTJs on the roughness of insulating tunnel barrier, we prepared two MTJs with the different uniformity of barrier thickness. Namely, the one has uniform insulating barrier thickness; the other has non-uniform insulating barrier thickness as compared to different thing. As to depositing amorphous layer CoZrNb under the pinning layer IrMn, we achieved MTJ with uniform barrier thickness. Toinvestigate the reliability of the MTJs dependent on the bottom electrode, time-dependent dielectric breakdown (TDDB) measurements were carried out under constant voltage stress. The Weibull fit of out data shows clearly that $t_{BD}$ scales with the thickness uniformity of MTJs tunnel barrier. Assuming a linear dependence of log($t_{BD}$) on stress voltages, we obtained the lifetime of $10^4$years at a operating voltage of 0.4 V at MTJs comprising CoNbZr layers. This study shows that the reliabilityof new MTJs structure was improved due to the ultra smooth barrier, because the surface roughness of the bottom electrode influenced the uniformity of tunnel barrier.

  • PDF

A Study on Time-Dependent Optimal Heater Control for Thermoforming Using Response Surface Method (열성형 과정에서 반응면 기법을 이용한 히터의 비정상 최적제어에 관한 연구)

  • Li, Zhen-Zhe;Heo, Kwang-Su;Seol, Seoung-Yun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2528-2533
    • /
    • 2007
  • Thermoforming is one of the most versatile and economical processes available for the manufacturing polymer products. The drawback of thermoforming is difficult to get uniform thickness of final products. For the distribution of thickness strongly depends on the temperature distribution of sheet, the adjustment of heater power is very important In this paper, an optimization study for getting uniform temperature distribution was carried out using dual optimization steps. At first, the steady state optimal distribution of heater power is searched by numerical optimization to get uniform temperature of sheet surface. In the second step, time-dependent optimal heater inputs have been found out to decrease the temperature difference through the direction of thickness using Rseponse Surface Method and D-optimal method. The optimization results show that the time-dependent optimal heater power distribution gives acceptable uniform sheet temperature in the field of forming temperature..

  • PDF

Blow Characteristics in Extrusion Blow Molding for Operational Conditions (압출 블로우 성형에서 성형조건에 따른 성형특성)

  • Jun Jae Hoo;Pae Youlee;Lyu Min-Young
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.233-238
    • /
    • 2005
  • Blow molding is divided into three categories, injection stretch blow molding, injection blow molding, and extrusion or direct blow molding. Extrusion blow molding has been studied experimentally to characterize the blowing behavior of parison. Blow conditions such as blowing temperature and cooling time were the experimental variables in this blowing experiment. Wall thickness of the lower part of blow molded sample was thicker than that of the upper part because of the sagging of parison during extrusion process. As temperature increases the wall thickness and the weight of blow molded sample decreased. No thickness variations in the blowing sample were observed according to the cooling time. The lower part of the sample showed high degree of crystallinity compare with the upper part of the sample. Thus the lower part of the sample was strong mechanically and structurally. It was recognized that the uniform wall thickness could not be obtained by only controlling the operational conditions. Parison variator should be introduced to get uniform wall thickness of parison and subsequently produce uniform wall thickness of blow molded product.

Experimental Study on Minimizing Wall Thickness Thinning for Deep Drawing of Circular Shells (원통형 딥드로잉 용기의 벽 두께 감소 최소화에 관한 실험적 연구)

  • Kim, Doo-Hwan
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.393-399
    • /
    • 1998
  • For minimizing wall thickness thinning of circular shells, a new stamping technology, the deep draw-ing process combined with ironing is approached and investigated. The design requirements for the deep drawing shells are to keep the optimum wall thickness with max. 10 percent thickness thinning of the initial blank thickness, to make uniform thickness strain distribution for the wall of circular shell and to improve the shape accuracy for the roundness and concentricity. In order to check the validity and effectiveness of proposed work, a sample process design is applied to a circular shell needed for a 4multi-stepped deep drawing. Through experiments, the variations of the thickness strain distribution in each drawing process are observed. Also a series of experiments are performed to investigate optimum process variables such as the geometry of tooling, radius and drawing rate. In particular, the advantage of current approach with ironing is shown in contrast to the conventional deep drawing process. From the results of proposed method, the optimum value of process variables are obtained, which contribute more uniform thickness strain distribution and better quality in the drawn product.

  • PDF

AXISYMMETRIC STAGNATION FLOW NEAR A PLANE WALL COATED WITH A MAGNETIC FLUID OF UNIFORM THICKNESS (균일 두께로 자성유체가 피막된 평면 벽 주의의 축대칭 정체 유동)

  • Ko, Hyung-Jong;Kim, Kyoung-Hoon;Kim, Se-Woong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.39-44
    • /
    • 2007
  • A similarity solution of the Navier-Stokes equation for the axisymmetric stagnation flow near a plane wall coated with a magnetic fluid of uniform thickness is constructed. The shape functions representing the flow in two (magnetic and normal) fluid layer are determined from a third order boundary value problem, which is solved by the Runge-Kutta method with two shooting parameters. Features of the flow including streamline pattern and interface velocity are investigated for the varying values of density ratio, viscosity ratio, and Reynolds number. The results for the interface and wall shear stress, boundary layer and displacement thickness are also presented.

  • PDF

TWO-DIMENSIONAL STAGNATION FLOW TOWARD A PLANE WALL COATED WITH MAGNETIC FLUID OF UNIFORM THICKNESS (균일 두께의 자성유체 피막이 있는 평면 벽을 향하는 2차원 정체 유동)

  • Ko, Hyung-Jong;Kim, Kyoung-Hoon;Kim, Se-Woong
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.20-27
    • /
    • 2007
  • Two-dimensional stagnation flow toward a plane wall coated with magnetic fluid of uniform thickness is investigated. The flow field is represented as a similarity solution of the Navier-Stokes equation for this incompressible laminar flow. The resulting third order ordinary differential equation is solved numerically by using the shooting method and by determining two shooting parameters so as to satisfy the boundary and interface conditions. Features of the flow including streamline patterns are investigated for the varying values of density ratio, viscosity ratio, and Reynolds number. An adverse flow with double eddy pair in magnetic fluid region is found to emerge as the Reynolds number becomes higher than a threshold value. The results for the interface velocity, interface and wall shear stress, and boundary layer and displacement thickness are also presented.

A Study on the Crack Growth Behavior of a Inclined Crack in a Non-Uniform Thickness Material (두께가 일정하지 않은 재료에서 경사진 균열의 성장거동에 관한 연구)

  • 조명래;표창률;박종주;고명훈
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.27-38
    • /
    • 1997
  • The effect of geometry factors on the combined mode stress intensity factor behaviors of a slant crack in a non-uniform thickness material was analysed by 2-dimensional theoretical analysis. The analysis is based on the Laurent's series expansions of complex potentials where the complex coefficients of the series are determined from the compatibility and the equilibrium conditions of the thickness interface and the stress free conditions of the crack surface. In numerical calculations the perturbation technique is employed. The expressions for the crack tip stress intensity factor are given in the form of power series of dimensionless crack length $\lamda$, and the function of crack slant angle $\alpha$ and thickness ratio $\beta$. The results of numerical calculations for each problems are represented as the correction factors F($\lamda$, $\alpha$, $\beta$). The results clearly show the following characteristics : The correction factors of the combined mode stress intensity factors for a non-uniform thickness material can be defined in the form of F($\lamda$, $\alpha$, $\beta$). The stress intensity factor values for a given crack length are decreased with increase of thickness ratio $\beta$.

  • PDF