• Title/Summary/Keyword: Uniform Temperature Distribution

Search Result 586, Processing Time 0.027 seconds

Thermal System Analysis to Optimize Torch Position in The Core Making Machine. (중자조형기의 토치위치 최적화를 위한 열계해석)

  • Han, Geun-Jo;Ahn, Sung-Chan;Shim, Jae-Joon;Han, Dong-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.43-47
    • /
    • 2002
  • The new core making method economizing the amount of core sand has been requested. The new method is that a core box is heated until it reaches reasonable temperature and then core sand with core binder is sprayed into the core box. Since inner temperature distribution have to be uniform in order to form uniform thickness of core, we studied inner temperature distribution of core box. First, we determined proper number of torches and optimized torch positions to minimize the average of absolute deviation(AVEDEV) of inner temperature. The results are as fellowed: 1. The number of torches that enables uniform inner temperature distribution about $300^{\circ}C$ is 25. 2. When $S_H$ and $S_V$ is 0.7, the torch positions are optimized and AVEDEV is 5.85.

Thermal System Analysis for Optimization of Torch Position in The Core Making Machine. (중자조형기의 토치위치 최적화를 위한 열계해석)

  • 한근조;안성찬;심재준;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.587-590
    • /
    • 2000
  • The new core making method economized on core sand requested. The new method is heating core box until it reaches reasonable temperature and then spraying core sand with core binder into core box. Inner temperature distribution have to uniform in order to form core of uniform thickness. Therefore, in this study we treat of inner temperature distribution of core box in priority. First, determine proper torch number. Next, optimize the torch position to minimize the average of absolute deviation(AVEDEV) of inner temperature. The results are as followed : 1. The torch number that makes inner temperature distribution about $300^\circ{C}$ uniformly is 25. 2. When $S_H$ and $S_V$ is 0.7, the torch position is optimized and AVEDEV is 5.85.

  • PDF

Distribution of clothing microclimate for making comfortable military uniform (쾌적한 군복 설계를 위한 의복기후 분포)

  • Kim, Yang-Won
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.231-247
    • /
    • 2003
  • To get the basic data for making comfortable military uniforms and to examine the distribution of clothing microclimate, seasonal fluctuations of skin temperature, subjective sensation, and clothing microclimate were measured from 10 males. The subject were questioned on thermal comfort in experiment. Clothing microclimate temperature at breast, skin temperature at four sites (breast, upper arm, thigh, leg), deep body temperature at eardrum( tympanic temperature), and subjective sensation were measured for an hour in the controlled climatic chamber. The subjects felt comfortable when skin temperature were recorded $34.43^{\circ}C$ at breast, $33.53^{\circ}C$ at upper arm, $32.9^{\circ}C$ at thigh, and 32.50 at leg. Then mean skin temperature was $33.55\pm$$0.63^{\circ}C$. Clothing microclimate temperature ranged from 31.2 to $33.8^{\circ}C$, and clothing microclimate humidity ranged from 49.80~52.41%. In the comparison of these results with the microclimate of military uniforms, it needs more insulation in clothing for military uniforms. It also says that military uniforms should be made of the textiles which can control humidity.

  • PDF

Thermal buckling and stability of laminated plates under non uniform temperature distribution

  • Widad Ibraheem Majeed;Ibtehal Abbas Sadiq
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.503-511
    • /
    • 2023
  • Stability of laminated plate under thermal load varied linearly along thickness, is developed using a higher order displacement field which depend on a parameter "m", whose value is optimized to get results closest to three-dimension elasticity results. Hamilton, s principle is used to derive equations of motion for laminated plates. These equations are solved using Navier-type for simply supported boundary conditions to obtain non uniform critical thermal buckling and fundamental frequency under a ratio of this load. Many design parameters of cross ply and angle ply laminates such as, number of layers, aspect ratios and E1/E2 ratios for thick and thin plates are investigated. It is observed that linear and uniform distribution of temperature reduces plate frequency.

Modal Parameter variation of Steel Cable-stayed Bridge Considering Solar Radiation (일사에 의한 온도변화에 따른 강사장교의 동적특성 변화)

  • Kim Sang-Hyo;Jo Kwang-Il;Park Ju-Yang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1040-1047
    • /
    • 2006
  • Bridges are exposed to constantly changing weather conditions and temperature. The temperature change is induced by a change in atmospheric temperature and solar radiation. Atmospheric temperature change acts on the whole structure. Thus, it is relatively easy to consider in the design. Solar radiation, however, causes un-uniform temperature distribution in the structure, depending on the shape of the structure and its shadows. Un-uniform temperature distribution causes a torsional moment in bridge section and a deformation of bridge. A deformation can make differences of dynamic and static behavior of bridge. In this study, the method for analysis of static and dynamic behavior considering deformation and changes of material properties due to temperature variation was developed. By this method, it is found from dynamic analysis results that the change of frequency in analysis model is similar with test results of public used cable-stayed bridge. When a temperature goes down, a frequency goes up. And it is found that the change of frequency is affected by the change of material properties.

  • PDF

Conjugated heat transfer on convection heat transfer from a circular tube in cross flow (원관 주위의 대류 열전달에 대한 복합 열전달)

  • 이승홍;이억수;정은행
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.523-534
    • /
    • 1998
  • The convection heat transfer on horizontal circular tube is studied as a conjugated heat transfer problem. With uniform heat generation in a cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer are investigated for the case of forced convection around horizontal circular tube in cross flow of air and water. Non-dimensional conjugation parameter $ K^*$ which can be deduced from the governing energy differential equation should be used to express the effect of circumferential wall heat conduction. Two-dimensional temperature distribution$ T({\gamma,\theta})$ is presented. The influence of circumferential wall heat conduction is demonstrated on graph of local Nusselt number.

  • PDF

Impact of axial power distribution on thermal-hydraulic characteristics for thermionic reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3910-3917
    • /
    • 2021
  • Reactor fuel's power distribution plays a vital role in designing the new generation thermionic Space Reactor Power Systems (SRPS). In this paper, the 1/12th SPACE-R's full reactor core was numerically analyzed with two kinds of different axial power distribution, to identify their impacts on thermal-hydraulic and thermoelectric characteristics. In the benchmark study, the maximum error between numerical results and existing data or design values ranged from 0.2 to 2.2%. Four main conclusions were obtained in the numerical analysis: a) The axial power distribution has less impact on coolant temperature. b) Axial power distribution influenced the emitter temperature distribution a lot, when the core power was cosine distributed, the maximum temperature of the emitter was 194 K higher than that of the uniform power distribution. c) Comparing to the cosine axial power distribution, the uniform axial power distribution would make the maximum temperature in each component of the reactor core much lower, reducing the requirements for core fuel material. d) Voltage and current distribution were similar to the axial electrode temperature distribution, and the axial power distribution has little effect on the output power.

Preparation of High-purity Porous Alumina Carrier for Gas Sensor (가스센서용 고순도 다공질 알루미나 담체의 제조)

  • 이창우;현성호;함영민
    • Fire Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.15-23
    • /
    • 1997
  • In this study, the alumina for gas sensor was prepared by anodic oxidation. It was stable thermally and chemically, and pore diameter and pore distribution was uniform. And the shape of pore was cylinderical. The aluminum plate was carried out by the thermal oxidation, chemical polishing and electropolishing pretreatment. The pore diameter, pore size distribution, pore density and thickness of alumina was observed with the change of reaction temperature, electrolyte concentration and current density. As a results, It was able to use for carrier because alumina which was prepared by anodic oxidationhas uniform pore size distribution.

  • PDF

Fabrication of Artificial Light-weight Aggregates of Uniform Bloating Properties Using a Temperature-raising Sintering Method (승온 소성법을 이용한 균일 발포 특성을 갖는 인공경량골재의 제조)

  • Kang, Min-A;Kang, Seung-Gu;Lee, Gi-Gang;Kim, Yoo-Tack
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.161-166
    • /
    • 2012
  • The temperature-rasing sintering method was used in this study to fabricate the aggregates of uniform pore size and distribution containing reject ash occurred in the thermal power plant. The spheric green aggregates made of reject ash were put into the box furnace of 800~$1000^{\circ}C$, heated with a heating rate of 5~$15^{\circ}C$/min to 1200~$1275^{\circ}C$, sintered for 10 min and then discharged out of the furnace to the room temperature. The input temperature, heating rate and sintering temperature increased the bloating phenomenon of the specimen, and the sintering temperature among them was the most effective factor. The aggregate manufactured at $1275^{\circ}C$ had the specific gravity of about 1.0 and water absorption of 1~2%, and the pores of 500~1,000 ${\mu}m$ were uniformly distributed across the whole specimen. Especially, the aggregates fabricated using the temperature-rasing sintering method in this study showed an excellent bloating properties and uniform microstructure without black core phenomenon which is typical for the bloated ceramics synthesized by direct sintering method.

Group Ignition of Liquid Fuel Droplets Cloud (액체연료 액적군의 집단 점화)

  • 박용열;김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2376-2384
    • /
    • 1992
  • A theoretical analysis is carried out to predict the characteristics of transient ignition phenomena for the spherical fuel droplets cloud with non-uniform droplet size and number density distribution. Numerical calculations are performed for various cases depending on the combinations of the major parameters such as ambient temperature and initial distributions of droplet size and number density. The results of present study show that the ignition delay decreases for higher ambient temperature and smaller droplet size. Droplets cloud of hollow type with outer concentrated distribution ignites most rapidly.