• Title/Summary/Keyword: Uniform Memory Access

Search Result 33, Processing Time 0.028 seconds

VDI deployment and performance analysys for multi-core-based applications (멀티코어 기반 어플리케이션 운용을 위한 데스크탑 가상화 구성 및 성능 분석)

  • Park, Junyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1432-1440
    • /
    • 2022
  • Recently, as Virtual Desktop Infrastructure(VDI) is widely used not only in office work environments but also in workloads that use high-spec multi-core-based applications, the requirements for real-time and stability of VDI are increasing. Accordingly, the display protocol used for remote access in VDI and performance optimization of virtual machines have also become more important. In this paper, we propose two ways to configure desktop virtualization for multi-core-based application operation. First, we propose a codec configuration of a display protocol with optimal performance in a high load situation due to multi-processing. Second, we propose a virtual CPU scheduling optimization method to reduce scheduling delay in case of CPU contention between virtual machines. As a result of the test, it was confirmed that the H.264 codec of Blast Extreme showed the best and stable frame, and the scheduling performance of the virtual CPU was improved through scheduling optimization.

Intelligent Intrusion Detection and Prevention System using Smart Multi-instance Multi-label Learning Protocol for Tactical Mobile Adhoc Networks

  • Roopa, M.;Raja, S. Selvakumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2895-2921
    • /
    • 2018
  • Security has become one of the major concerns in mobile adhoc networks (MANETs). Data and voice communication amongst roaming battlefield entities (such as platoon of soldiers, inter-battlefield tanks and military aircrafts) served by MANETs throw several challenges. It requires complex securing strategy to address threats such as unauthorized network access, man in the middle attacks, denial of service etc., to provide highly reliable communication amongst the nodes. Intrusion Detection and Prevention System (IDPS) undoubtedly is a crucial ingredient to address these threats. IDPS in MANET is managed by Command Control Communication and Intelligence (C3I) system. It consists of networked computers in the tactical battle area that facilitates comprehensive situation awareness by the commanders for timely and optimum decision-making. Key issue in such IDPS mechanism is lack of Smart Learning Engine. We propose a novel behavioral based "Smart Multi-Instance Multi-Label Intrusion Detection and Prevention System (MIML-IDPS)" that follows a distributed and centralized architecture to support a Robust C3I System. This protocol is deployed in a virtually clustered non-uniform network topology with dynamic election of several virtual head nodes acting as a client Intrusion Detection agent connected to a centralized server IDPS located at Command and Control Center. Distributed virtual client nodes serve as the intelligent decision processing unit and centralized IDPS server act as a Smart MIML decision making unit. Simulation and experimental analysis shows the proposed protocol exhibits computational intelligence with counter attacks, efficient memory utilization, classification accuracy and decision convergence in securing C3I System in a Tactical Battlefield environment.

Reduction of Leakage Current and Enhancement of Dielectric Properties of Rutile-TiO2 Film Deposited by Plasma-Enhanced Atomic Lay er Deposition

  • Su Min Eun;Ji Hyeon Hwang;Byung Joon Choi
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.283-290
    • /
    • 2024
  • The aggressive scaling of dynamic random-access memory capacitors has increased the need to maintain high capacitance despite the limited physical thickness of electrodes and dielectrics. This makes it essential to use high-k dielectric materials. TiO2 has a large dielectric constant, ranging from 30~75 in the anatase phase to 90~170 in rutile phase. However, it has significant leakage current due to low energy barriers for electron conduction, which is a critical drawback. Suppressing the leakage current while scaling to achieve an equivalent oxide thickness (EOT) below 0.5 nm is necessary to control the influence of interlayers on capacitor performance. For this, Pt and Ru, with their high work function, can be used instead of a conventional TiN substrate to increase the Schottky barrier height. Additionally, forming rutile-TiO2 on RuO2 with excellent lattice compatibility by epitaxial growth can minimize leakage current. Furthermore, plasma-enhanced atomic layer deposition (PEALD) can be used to deposit a uniform thin film with high density and low defects at low temperatures, to reduce the impact of interfacial reactions on electrical properties at high temperatures. In this study, TiO2 was deposited using PEALD, using substrates of Pt and Ru treated with rapid thermal annealing at 500 and 600 ℃, to compare structural, chemical, and electrical characteristics with reference to a TiN substrate. As a result, leakage current was suppressed to around 10-6 A/cm2 at 1 V, and an EOT at the 0.5 nm level was achieved.