• Title/Summary/Keyword: Uniaxial crystal

Search Result 39, Processing Time 0.024 seconds

A Study on the Characteristics of High Temperature and Mechanisms for Creep Deformation of AZ31 Mg Alloy (AZ31마그네슘 합금의 고온특성 및 크리이프 변형기구에 관한연구)

  • Kang, D.M.;An, J.O.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.96-101
    • /
    • 2005
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, uniaxial tension tests at high temperature and creep tests are done in order to investigate the characteristics of high temperature and mechanisms for creep deformation of AZ31 Mg alloy. Yield stress and ultimate tensile stress decreased with increasing temperature, but elongation increased from results of uniaxial tension test at high temperature. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of 473K to 573K and stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $473K{\sim}493K$ and under the stress level of $62.43{\sim}93.59%MPa$, and again at around the temperature of $553K{\sim}573K$ and under the stress level of $23.42{\sim}39.00MPa$, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal, respectively, and a little low to that of the self diffusion of Mg alloy including aluminum. Also rupture surfaces at high temperature have had bigger dimples than those at lower temperature by SEM.

  • PDF

Atomistic simulations of nanocrystalline U0.5Th0.5O2 solid solution under uniaxial tension

  • Xiao, Hongxing;Wang, Xiaomin;Long, Chongsheng;Tian, Xiaofeng;Wang, Hui
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1733-1739
    • /
    • 2017
  • Molecular dynamics simulations were performed to investigate the uniaxial tensile properties of nanocrystalline $U_{0.5}Th_{0.5}O_2$ solid solution with the Born-Mayer-Huggins potential. The results indicated that the elastic modulus increased linearly with the density relative to a single crystal, but decreased with increasing temperature. The simulated nanocrystalline $U_{0.5}Th_{0.5}O_2$ exhibited a breakdown in the Halle-Petch relation with mean grain size varying from 3.0 nm to 18.0 nm. Moreover, the elastic modulus of $U_{1-y}Th_yO_2$ solid solutions with different content of thorium at 300 K was also studied and the results accorded well with the experimental data available in the literature. In addition, the fracture mode of nanocrystalline $U_{0.5}Th_{0.5}O_2$ was inclined to be ductile because the fracture behavior was preceded by some moderate amount of plastic deformation, which is different from what has been seen earlier in simulations of pure $UO_2$.

A study on the Change of Uniaxial Compressive Strength and Young's Modulus According to the Specimen Size of Intact Material (무결함 재료의 크기에 따른 강도와 탄성계수의 변화에 관한 연구)

  • Lee, Seung-Woo;Song, Jae-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.205-217
    • /
    • 2006
  • Rock and discontinuities are main factors consisting of a rock mass and the physical properties of each factor have direct effects on the mechanical stability of artificial structures in the rock mass. Because physical properties of the rock and discontinuities change a lot according to the size of test materials, a close attention is needed when the physical properties, obtained from laboratory tests, are used for the design of field structures. In this study, change of physical properties of intact materials due to the change of their size are studied. Six kinds of artificial materials including crystal, instead of an intact rock, are adopted for the study to guarantee the homogeneity of specimen materials even with relatively large size. Uniaxial strength and Young's modulus of each artificial material are checked out for a size effect and compared with the predicted values by Buckingham's theorem - dimensional analysis. A numerical analysis using PFC (Particle Flow Code) is also applied and primary factors influencing on the size effect are investigated.

Theoretical Analysis of Biaxial Films for the Optical Compensation of TN-LCDs (TN-LCD 광학보상을 위한 Biaxial Film의 이론적 해석)

  • Kim, Bong-Sik;Kang, Choon-Ky;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.209-212
    • /
    • 2012
  • In this paper, we have studied on the optimal design of the optical compensation film for the TN-LCDs. To have wide viewing angle panels, several methods such as multi-domain method, optical path method, and phase compensation method have been proposed. Among these methods, this paper focused on the phase compensation method. In the phase compensation method, the phase retardation generated from the optical birefringence for the off-axis incident is compensated by using optical films with refractive anisotropy. To compensate the phase retardation of the TN-LCDs, we have proposed design concept for the biaxial optical films and analyzed the optical performance for the proposed structures. The calculation of the dynamic motion of the liquid crystals was based on the Ericksen-Leslie theory and the optical performance of the TN-LCD was calculated from the Extended Jones Matrix Method. From the results, we have confirmed that the optical characteristics of the TN-LCDs with the biaxial films have been improved considerably compared with the TN-LCDs compensated by the combination of the uniaxial films.

Optical Compensation of IPS-LCD for Symmetric-High-Contrast at Off-Axis Oblique View (측면시야각에서의 대칭적 명암대비비 향상을 위한 IPS-LCD 광학보상)

  • Kim, Tae-Hyeon;Kim, Bong-Sik;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.175-180
    • /
    • 2016
  • In this study, we proposed an optical compensation method to improve the symmetricity of contrast ratio for wide viewing angle IPS (in-plane switching) LCD. First, the phase retardation depending on the thickness of compensation film is calculated, and then the phase change is presented at the $Poincar{\acute{e}}$ sphere. The phase retardation and the polarization state of the light passing through the optical elements are caculated by using the EJMM (extended Jones matrix method). In addition, the transmittance and the contrast countour are also calculated by using the Berremann's $4{\times}4$ matrix method. The simulation is carried out for a IPS LC cell with positive A/C/A compensation film. From the standard deviation of the contrast ratio, we confirmed the symmetricity at each viewing angle is inversely proportional to the standard deviation and calculated the optimum design condition of the uniaxial compensation film for the IPS LCD.

Reutilization of waste LCD panel glass as a building material (건축자재로서 폐 LCD 판유리의 재활용)

  • Min, Kyoung-Won;Lee, Hyun-Cheol;Seo, Eui-Young;Lee, Won-Sub
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.53-57
    • /
    • 2011
  • Recently due to dramatically increasing demand of liquid crystal display (LCD) panel in IT industry, the used LCD panel glass has been wasted from electronic items, and also panel glass of poor quality during manufacturing process. The wasted LCD panel glass was crushed in the range of 0.42 to 2mm and evaluated for its usefulness as a aggregate in production of cement concrete brick. Cement concrete specimens with various mixing ratios of weathered granite soil, LCD panel glass and cement were cured in wetness for 7 days at $40^{\circ}C$ and then tested for uniaxial comprehensive strength (UCS)(KS F 4004 method). Specimen with a mixing ratio, 1:6:3, of weathered granite, LCD panel glass and cement, respectively, showed the highest average in the UCS test($26.51N/mm^2$). It is much higher than that of commercial brick without glass($17.00N/mm^2$). Conclusively waste LCD panel glass can be reutilized economically as a raw building material of good quality.

  • PDF

Synthesis of akermanite bioceramics by solid-state reaction and evaluation of its bioactivity (고상반응법에 의한 아커마나이트 분말의 합성 및 생체활성도 평가)

  • Go, Jaeeun;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.191-198
    • /
    • 2022
  • Zirconia and titanium alloys, which are mainly used for dental implant materials, have poor osseointegration and osteogenesis abilities due to their bioinertness with low bioactivity on surface. In order to improve their surface bioinertness, surface modification with a bioactive material is an easy and simple method. In this study, akermanite (Ca2MgSi2O7), a silicate-based bioceramic material with excellent bone bonding ability, was synthesized by a solid-state reaction and investigated its bioactivity from the analysis of surface dissolution and precipitation of hydroxyapatite particles in SBF solution. Calcium carbonate (CaCO3), magnesium carbonate (MgCO3), and silicon dioxide (SiO2) were used as starting materials. After homogeneous mixing of starting materials by ball milling and the drying of at oven, uniaxial pressing was performed to form a compacted disk, and then heat-treated at high temperature to induce the solid-state reaction to akermanite. Bioactivity of synthesized akermanite disk was evaluated with the reaction temperature from the immersion test in SBF solution. The higher the reaction temperature, the more pronounced the akermanite phase and the less the surface dissolution at particle surface. It resulted that synthesized akermanite particles had high bioactivity on particle surface, but it depended on reacted temperature and phase composition. Moderate dissolution occurred at particle surfaces and observed the new precipitated hydroxyapatite particles in synthetic akermanite with solid-state reaction at 1100℃.

Strength Development Characteristics of Clay Stabilized with Electric Furnace Steel Slag (전기로 제강슬래그로 안정화된 연약점토의 강도 발현 특성)

  • Hyeongjoo Kim;Taegew Ham;Taewoong Park;Taeeon Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.29-37
    • /
    • 2024
  • This study aimed to investigate the changes in chemical components that occur when weak clay is mixed with steel slag modified with calcium oxide, and to understand the expression characteristics of compressive strength according to hydrophilicity and curing time. XRF testing, SEM imaging, vane shear strength and uniaxial compressive strength testing were conducted. Calcium (Ca) released from the steel slag increases the Ca content in clay by increasing the number of crystal particles and forming a coating layer known as calcium silicate hydrate (CaO-SiO2-H2O) through chemical reactions with SiO2 and Al2O3 components. The weak clay stabilized with steel slag is classified into an initial inactive zone where strength relatively does not increase and an activation zone where strength increases over curing time. The vane shear strength of the initial inactive area was found to be 4.4 to 18.4 kN/m2 in the state of the weight mixing ratio Rss 30% (steel slag 30% + clay 70%). In the case of the active area, the maximum uniaxial compressive strength increased to 431.8 kN/m2 after 480 hours of curing time, which increased due to the apparent adhesion strength of clay through pozzolanic reaction. Therefore, considering the strength expression characteristics of stabilized mixed clay based on the mixing ratio (Rss) during the recycling of steel slag can enhance its practicality in civil engineering sites.

The Explicitly Quasi-linear Relation Between the Order Parameter and Normalized Birefringence of Aligned Uniaxially Anisotropic Molecules Determined Using a Numerical Method (수치해석적인 방법으로 규명한 정렬된 단축이방성 분자들의 질서변수와 상대 복굴절의 준선형 관계식)

  • Kim, Sang Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.6
    • /
    • pp.223-228
    • /
    • 2016
  • The birefringence of distributed, uniaxially anisotropic molecules like liquid crystals is calculated as the degree of ordering is varied. The relation between the normalized birefringence ${\Delta}n_{rel}$ and the orientational order parameter S is investigated. The distribution function, which enables one to monitor the degree of ordering of liquid crystals including randomly distributed ones, is introduced. Using this distribution function, a series of distributed liquid crystals with order parameters ranging from 0 to 1 are generated, and ${\Delta}n_{rel}$ and S of the correspondingly distributed liquid crystals are calculated. Based on the calculated data, it is revealed that ${\Delta}n_{rel}$ and S satisfy the quasi-linear relation of $S=(1+a){\Delta}n_{rel}-a{\Delta}n^2_{rel}$, where a can be approximated as $n_o{\frac{{\Delta}n}{4}}$. The anisotropy of molecular polarizability is also calculated, using the birefringence, and separately following Vuks' method and Neugebauer's method, and it is shown that the relations between S and the molecular-polarizability anisotropy are also quasi-linear.