• 제목/요약/키워드: Uniaxial compressive strength

검색결과 456건 처리시간 0.03초

고온 및 저온하에서의 암석의 변형, 파괴 특성 (Failure and Deformation Characteristics of Rock at High and Low Temperatures)

  • 정재훈;김영근;이형원;이희근
    • 터널과지하공간
    • /
    • 제2권2호
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

Investigation of mechanical behaviour of non-persistent jointed blocks under uniaxial compression

  • Asadizadeh, Mostafa;Moosavi, Mahdi;Hossaini, Mohammad Farouq
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.29-42
    • /
    • 2018
  • This paper presents the results of an empirical study in which square rock-like blocks containing two parallel pre-existing rough non-persistent joints were subjected to uniaxial compression load. The main purpose of this study was to investigate uniaxial compressive strength and deformation modulus of jointed specimens. Response Surface Method (RSM) was utilized to design experiments and investigate the effect of four joint parameters, namely joint roughness coefficient (JRC), bridge length (L), bridge angle (${\gamma}$), and joint inclination (${\theta}$). The interaction of these parameters on the uniaxial compressive strength (UCS) and deformation modulus of the blocks was investigated as well. The results indicated that an increase in joint roughness coefficient, bridge length and bridge angle increased compressive strength and deformation modulus. Moreover, increasing joint inclination decreased the two mechanical properties. The concept of 'interlocking cracks' which are mixed mode (shear-tensile cracks) was introduced. This type of cracks can happen in higher level of JRC. Initiation and propagation of this type of cracks reduces mechanical properties of sample before reaching its peak strength. The results of the Response Surface Methodology showed that the mutual interaction of the joint parameters had a significant influence on the compressive strength and deformation modulus.

Brazilian시험을 이용한 일축압축강도와 탄성계수의 추정(II) (Estimation of Uniaxial Compressive Strength and Elastic Modulus from Brazilian Test)

  • 민덕기;문종규;노재술
    • 한국지반공학회논문집
    • /
    • 제25권8호
    • /
    • pp.65-76
    • /
    • 2009
  • 본 연구는 Brazilian 시험결과를 매개로 일축압축강도와 탄성계수를 추정할 수 있는 경험식을 화성암의 대부분을 구성하는 화강암, 안산암 및 유문암을 대상으로 도출하였다. 기존 간편식(점하중 강도지수, Schmidt hammer 타격법)으로 도출된 결과와 비교, 검정을 하여 좋은 상관성과 신뢰성을 확인하였기에 Brazilian 시험은 일축압축강도와 탄성계수를 추정할수 있는 또 하나의 간접방법으로 사료된다. 특히 지질 조사시 얻은 제한된 코어로 인하여 직접시험이 어려운 경우에도 본 연구에서 제시하는 방법이 효율성이 있을 것으로 사료된다.

제주도 현무암의 압축 및 인장강도에 대한 영향요인 분석 (Analysis of Influence factors to Compressive and Tensile Strength of Basalt in Cheju Island)

  • 남정만;윤중만;송영석;김준호
    • 지질공학
    • /
    • 제18권2호
    • /
    • pp.215-225
    • /
    • 2008
  • 본 연구에서는 제주도 현무암의 압축강도와 인장강도에 영향을 미치는 요인을 조사하기 위하여 서귀포시 성산읍 일대의 표선리 현무암, 조면암질 현무암 및 스코리아 시료를 채취하고 각각에 대한 일축압축시험과 압열인장시험을 실시하였다. 특히 하중재하시 가압속도, 암석의 수분함량 및 암석의 이방성을 고려하여 시험을 실시하였다. 일축압축시험시 하중재하속도가 증가함에 따라 일축압축강도가 증가하며 일축압축강도의 증가정도는 암종에 따라 차이가 있음을 알 수 있다. 그리고 암석시료내 수분함량이 증가함에 따라 공극내 물의 영향으로 인하여 강도는 저하되었다. 암석시료의 강도이방성을 고려한 시험결과 층리면과 평행하게 파괴가 발생되는 경우가 일정한 경사를 가지고 파괴가 발생하는 경우보다 약 12-26%의 일축압축강도가 저하됨을 알 수 있다.

경량혼합토의 도로 노상층 재료 사용 가능성 평가 (Evaluation of Lightweight Soil as a Subgrade Material)

  • 박대욱;보베이트하이
    • 한국도로학회논문집
    • /
    • 제15권5호
    • /
    • pp.57-64
    • /
    • 2013
  • PURPOSES : It is to evaluate lightweight soil as a subgrade material based on mechanical tests and calculation of pavement performance. METHODS : In this research, various contents of cement and air foam are used to make lightweight soil using wasted dredged soil. Uniaxial compressive strength test is conducted to evaluate strength of 7 and 28 day cured specimens. Secant modulus was calculated based on the stress and strain relationship of uniaxial compressive strength test. Resilient modulus test was measured using by repeated triaxial compression test. The measured resilient modulus was used in layered elastic program to predict fatigue and rutting life at a given pavement structure. RESULTS : Uniaxial compressive strength increases as cement content increases but decrease as air foam content increases. Resilient modulus also increases as cement content increases and decrease as air foam content decrease. CONCLUSIONS : It is concluded that dredge clay soil can be used as subgrade layer material using by lightweight treated soil method.

Study on the characteristics of grout material using ground granulated blast furnace slag and carbon fiber

  • Kim, Daehyeon;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.361-368
    • /
    • 2019
  • This study aims to evaluate the applicability of a grout material that is mixed with carbon fiber, biogrout, ground granulated blast furnace slag (GGBS) powder and cement. Uniaxial compressive strength tests were performed on homo-gel samples at days of 1, 3, 7, 14 and 28. In addition, the variation of permeability with the mixing ratios was measured. Based on the uniaxial compressive strength test, it was confirmed that the uniaxial compressive strength increased by 1.2times when carbon fiber increased by 1%. In addition, as a result of the permeability test, it was found that when the GGBS increased by 20%, the permeability coefficient decreased by about 1.5times. Therefore, the developed grout material can be used as a cutoff grouting material in the field due to its strength and cut-off effect.

Brazilian시험을 이용한 일축압축강도, 탄성계수의 추정 (I) (Predicting Uniaxial Compressive Strength and Elastic Modulus Using Brazilian Test)

  • 민덕기;문종규;노재술
    • 한국지반공학회논문집
    • /
    • 제24권10호
    • /
    • pp.131-146
    • /
    • 2008
  • 일축압축강도와 탄성계수를 신속하고 간편하게 추정하기 위하여 많은 연구자들이 여러 가지 방법을 제시하여 왔으며 그 중 실용성이 높은 경험식들도 있다. 본 연구는 압열인장강도를 매개로 일축압축강도와 탄성계수를 추정할 수 있는 경험식을 퇴적암을 대표하는 사암과 셰일, 변성암을 대표하는 편마암에서 도출하였다. 기존 간편식(점하중강도, Schmidt hammer 타격법)으로 도출된 결과와 비교, 검정을 하여 높은 신뢰성을 확인하였기에 압열인장강도를 매개로 일축압축강도와 탄성계수를 추정할 수 있는 또 하나의 신뢰성 높은 간접방법으로 사료된다. 지질 조사시 얻은 제한된 코어로 인하여 직접시험으로 도출하기 어려운 경우에도 본 연구에서 제시하는 방법이 효율성이 높을 것으로 사료된다.

발파진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향 (Effects of Blasting Vibrations on Strength and Physical Properties of Curing Concrete)

  • 박근순
    • 화약ㆍ발파
    • /
    • 제16권4호
    • /
    • pp.18-28
    • /
    • 1998
  • Effects of blasting vibrations on curing concrete have not been well studied. As a result, unreasonable and strong blasting vibration constraints have been placed on blasting when it occur in the vicinity of curing concrete. To study the effects of blasting on curing concrete blocks of $33.3{\times}27.7{\times}16.2cm$ were molded and placed on the quarry. Several sets of concrete blocks were subjected separately to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses of blasting vibrations were applied with thirty-minute intervals. Along with unvibrated concrete blocks, the vibrated concrete samples cored with 60.3mm in diameter were measured for elastic moduli, sonic velocity and uniaxial compressive strength. Test results can be summarized as follows; 1. The blasting vibrations between 6 and 8 hours after pour generally lowered on the uniaxial compressive strength of the concrete. 2. A low blasting vibration of 0.25cm/sec did not affect the uniaxial compressive strength. As the magnitude of the blasting vibration increases, compressive strength of concrete is decreased. 3. Physical properties of the P-wave velocity, Young’s modulus, and Poisson's ratio showed a weakly decreasing trend in the concrete blocks vibrated between 6 and 8 hours after pour.

  • PDF

발파진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향 (Effects of Blasting Vibrations on Strength and Physical Properties of Curing Concrete)

  • 임한욱;박근순;정동호;이상은
    • 터널과지하공간
    • /
    • 제5권2호
    • /
    • pp.134-143
    • /
    • 1995
  • Effects of blasting vibrations on curing concrete have not been well studied. As a result, unreasonable and strong blasting vibration constraints have been placed on blasting when it occurs in the vicinity of curing concrete. To study the effects of blasting on curing concrete blocks of 33.3X27.7X16.2 cm were molded and placed on the quarry. Several sets of concrete blocks were subjected separately to peak vibrations of 0.25, 0.5. 1.0, 5.0, and 10cm/sec. The impulses of blasting vibrations were applied with thirty-minute intervals. Along with unvibrated concrete blocks, the vibrated concrete samples cored with 60.3 mm in diameter were measured for elastic moduli, sonic velocity and uniaxial compressive strength. Test results can be summarized as follows; 1. The blasting vibrations between 6 and 8 hours after pour generally lowered on the uniaxial compressive strength of the concrete. 2. A low blasting vibration of 0.25 cm/sec did not affect the uniaxial compressive strength. As the magnitude of the blasting vibration increases, compressive strength of concrete is decreased. 3. Physical properties of the P-wave velocity, Young's modulus, and Poisson's ratio showed a weakly decreasing trend in the concrete blocks vibrated between 6 and 8 hours after pour.

  • PDF

발파진동이 양생 콘크리트의 물성에 미치는 영향 (Effects of Blasting Vibrations of Physical Properties of Curing Concrete)

  • 정동호
    • 자연, 터널 그리고 지하공간
    • /
    • 제1권1호
    • /
    • pp.81-87
    • /
    • 1999
  • Effects of blasting vibrations on curing concrete have not been well studied. As a result, unrealistic and costly blasting vibration constraints have been placed on blasting when it occurs in the vicinity of curing concrete. To study the effects of blasting, concrete blocks of $30\times20\times20cm$ were molded and placed on the quarry Different sets of concrete blocks were subjected to peak vibrations of 0.25, 0.5, 1.0, 5.0, and 10cm/sec. The impulses of blasting vibrations were applied at thirty minutes intervals . Along with unvibrated concrete blocks, the vibrated concrete samples with 60.3mm in diameters were measured for elastic moduli, sonic velocity and uniaxial compressive strength. Test results can be summarized as follows : 1) The blasting vibrations between 6 and 8 hours after pour generally have exerted bad influences on the uniaxial compressive strength of the concrete 2) Under low vibration of 0.25cm/sec variations of the uniaxial compressive strength were not shown. As the magnitudes of blasting vibration increased, compressive strength of concrete decreased. But under the vibrations between 5 and 10cm/sec decreases in strength were almost same. 3) Physical properties of the p-wave velocity, Young's modulus, and Poisson's ratio appeared to decrease for the concrete blocks subjected to vibration for 6 to 8 hours.

  • PDF