• Title/Summary/Keyword: Uniaxial Vibration Test

검색결과 26건 처리시간 0.294초

복합 스펙트럼 패턴의 진동 시험을 위한 가속도 응답 데이터 기반의 피로 손상도 계산 방법 (Damage Count Method Using Acceleration Response for Vibration Test Over Multi-spectral Loading Pattern)

  • 김찬중
    • 한국소음진동공학회논문집
    • /
    • 제25권11호
    • /
    • pp.739-746
    • /
    • 2015
  • Several damage counting methods can be applied for the fatigue issues of a ground vehicle system using strain data and acceleration data is partially used for a high cyclic loading case. For a vibration test, acceleration data is, however, more useful than strain one owing to the good nature of signal-to-random ratio at acceleration response. The test severity can be judged by the fatigue damage and the pseudo-damage from the acceleration response stated in ISO-16750-3 is one of sound solutions for the vibration test. The comparison of fatigue damages, derived from both acceleration and strain, are analyzed in this study to determine the best choice of fatigue damage over multi-spectral input pattern. Uniaxial excitation test was conducted for a notched simple specimen and response data, both acceleration and strain, are used for the comparison of fatigue damages.

발파진동이 양생 콘크리트의 물성에 미치는 영향 (Effects of Blasting Vibrations of Physical Properties of Curing Concrete)

  • 정동호
    • 자연, 터널 그리고 지하공간
    • /
    • 제1권1호
    • /
    • pp.81-87
    • /
    • 1999
  • Effects of blasting vibrations on curing concrete have not been well studied. As a result, unrealistic and costly blasting vibration constraints have been placed on blasting when it occurs in the vicinity of curing concrete. To study the effects of blasting, concrete blocks of $30\times20\times20cm$ were molded and placed on the quarry Different sets of concrete blocks were subjected to peak vibrations of 0.25, 0.5, 1.0, 5.0, and 10cm/sec. The impulses of blasting vibrations were applied at thirty minutes intervals . Along with unvibrated concrete blocks, the vibrated concrete samples with 60.3mm in diameters were measured for elastic moduli, sonic velocity and uniaxial compressive strength. Test results can be summarized as follows : 1) The blasting vibrations between 6 and 8 hours after pour generally have exerted bad influences on the uniaxial compressive strength of the concrete 2) Under low vibration of 0.25cm/sec variations of the uniaxial compressive strength were not shown. As the magnitudes of blasting vibration increased, compressive strength of concrete decreased. But under the vibrations between 5 and 10cm/sec decreases in strength were almost same. 3) Physical properties of the p-wave velocity, Young's modulus, and Poisson's ratio appeared to decrease for the concrete blocks subjected to vibration for 6 to 8 hours.

  • PDF

발파진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향 (Effects of Blasting Vibrations on Strength and Physical Properties of Curing Concrete)

  • 박근순
    • 화약ㆍ발파
    • /
    • 제16권4호
    • /
    • pp.18-28
    • /
    • 1998
  • Effects of blasting vibrations on curing concrete have not been well studied. As a result, unreasonable and strong blasting vibration constraints have been placed on blasting when it occur in the vicinity of curing concrete. To study the effects of blasting on curing concrete blocks of $33.3{\times}27.7{\times}16.2cm$ were molded and placed on the quarry. Several sets of concrete blocks were subjected separately to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses of blasting vibrations were applied with thirty-minute intervals. Along with unvibrated concrete blocks, the vibrated concrete samples cored with 60.3mm in diameter were measured for elastic moduli, sonic velocity and uniaxial compressive strength. Test results can be summarized as follows; 1. The blasting vibrations between 6 and 8 hours after pour generally lowered on the uniaxial compressive strength of the concrete. 2. A low blasting vibration of 0.25cm/sec did not affect the uniaxial compressive strength. As the magnitude of the blasting vibration increases, compressive strength of concrete is decreased. 3. Physical properties of the P-wave velocity, Young’s modulus, and Poisson's ratio showed a weakly decreasing trend in the concrete blocks vibrated between 6 and 8 hours after pour.

  • PDF

발파진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향 (Effects of Blasting Vibrations on Strength and Physical Properties of Curing Concrete)

  • 임한욱;박근순;정동호;이상은
    • 터널과지하공간
    • /
    • 제5권2호
    • /
    • pp.134-143
    • /
    • 1995
  • Effects of blasting vibrations on curing concrete have not been well studied. As a result, unreasonable and strong blasting vibration constraints have been placed on blasting when it occurs in the vicinity of curing concrete. To study the effects of blasting on curing concrete blocks of 33.3X27.7X16.2 cm were molded and placed on the quarry. Several sets of concrete blocks were subjected separately to peak vibrations of 0.25, 0.5. 1.0, 5.0, and 10cm/sec. The impulses of blasting vibrations were applied with thirty-minute intervals. Along with unvibrated concrete blocks, the vibrated concrete samples cored with 60.3 mm in diameter were measured for elastic moduli, sonic velocity and uniaxial compressive strength. Test results can be summarized as follows; 1. The blasting vibrations between 6 and 8 hours after pour generally lowered on the uniaxial compressive strength of the concrete. 2. A low blasting vibration of 0.25 cm/sec did not affect the uniaxial compressive strength. As the magnitude of the blasting vibration increases, compressive strength of concrete is decreased. 3. Physical properties of the P-wave velocity, Young's modulus, and Poisson's ratio showed a weakly decreasing trend in the concrete blocks vibrated between 6 and 8 hours after pour.

  • PDF

대구지역지층의 지질특성과 대표암반에 대한 발파진동계수산출 (Blasting vibration coefficients and mechanical characteristics of Taegu area)

  • 안명석;김종대;김남수
    • 터널과지하공간
    • /
    • 제10권2호
    • /
    • pp.211-217
    • /
    • 2000
  • 본 연구는 대구지역의 대표적인 암석들을 대상으로 일축압축시험 등의 실내 시험과 현장 탄성파속도 시험 등을 실시하여 역학적 특성을 규명하였고, 달서구 성서지역에서 시험발파를 실시하여 발파진동계수를 도출하였다. 그 결과 대구지역의 경상계 퇴적암류는 풍화암에서 경암까지의 다양한 강도 특성을 보였고, 화산암류인 안산암은 경암에서 극경암에 해당되는 것으로 나타났다. 또한 풍화암 내지 보통암에 해당되는 성서지역의 시험발파 결과 발파진동계수 K는 114.8, n은 1.48로 계산되었다.

  • PDF

다구찌법을 이용한 트랙터 캐빈 방진고무의 형상최적설계 (Shape Optimal Design of Anti-vibration Rubber Assembly in Tractor Cabin Using Taguchi Method)

  • 서지환;이부윤;이상훈
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.34-40
    • /
    • 2019
  • We performed shape optimization of an anti-vibration rubber assembly which is used in the field option cabin of agricultural tractors to improve the vibration isolation capability. To characterize the hyper-elastic material property of rubber, we performed uniaxial and biaxial tension tests and used the data to calibrate the material model applied in the finite element analyses. We conducted a field test to characterize the input excitation from the tractor and the output response at the cabin frame. To account for the nonlinear behavior of rubber, we performed static analyses to derive the load-displacement curve of the anti-vibration rubber assembly. The stiffness of the rubber assembly could be calculated from this curve and was input to the harmonic analyses of the cabin. We compared the results with the test data for verification. We utilized Taguchi's parameter design method to determine the optimal shape of the anti-vibration rubber assembly and found two distinct shapes with reduced stiffness. Results show that the vibration at the cabin frame was reduced by approximately 35% or 47.6% compared with the initial design using the two optimized models.

미진동 Kinecker 진동수준에 관한 연구 (A Study on the Vibration Level of Low Vibration Kinecker)

  • 김희도;안봉도;최성현
    • 화약ㆍ발파
    • /
    • 제24권2호
    • /
    • pp.65-73
    • /
    • 2006
  • 일반 에멀젼폭약과 정밀폭약 및 미진동 Kinecker를 시험 발파하여 각각의 진동 특성을 분석하였다. 시험발파 대상 지역은 안산암이 주종을 이루며, 안산암의 일축압축강도는 $1,260kg/cm^2$로 나타났다. 각 발파패턴별로 시험 발파하여 측정한 진동 자료를 회귀 분석하여 환산거리별 진동속도를 비교한 결과 미진동 Kinecker 발파공법이 정밀진동제어발파보다 평균 30.71%, 진동제어중규모발파보다는 평균 50.94%정도의 진동이 낮게 전파됨을 볼 수 있었다.

트랙터 캐빈의 진동저감을 위한 방진고무의 형상최적설계 (Shape Optimal Design of Anti-Vibration Rubber Assembly to Reduce the Vibration of a Tractor Cabin)

  • 최효준;이상훈
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.657-663
    • /
    • 2018
  • 본 연구에서는 농업용 트랙터에 조립식으로 결합되는 캐빈에 사용되는 방진고무의 진동절연성능을 향상시키기 위하여 형상최적설계를 수행하였다. 초탄성거동을 보이는 고무의 물성을 평가하기 위하여 일축 및 이축 인장시험을 수행하였고 이를 이용하여 유한요소해석에 입력 가능한 재료 모델을 도출하였다. 실제 트랙터의 운전 상태에서 진동을 측정하여 방진고무로 전달되는 입력 가진 및 이로 인한 캐빈 프레임의 응답을 정량화하였다. 비선형 거동을 보이는 방진고무의 특성을 반영하기 위해 정해석을 이용하여 방진고무의 하중-변위 곡선을 도출하였다. 이로부터 특정 하중 혹은 변위가 가해진 상태에서 방진고무의 강성을 계산할 수 있었으며 이를 캐빈의 조화가진해석에 사용하였다. 해석결과와 시험 결과의 비교를 통하여 해석모델 및 기법의 타당성을 검증하였다. 방진고무의 형상설계를 위하여 다구찌의 인자설계법이 사용되었으며 이를 통하여 강성이 최소화된 방진고무의 형상을 찾을 수 있었다. 방진고무의 최적 형상을 고려하여 조화가진해석을 수행한 결과 초기설계 대비 35 % 이상 개선된 진동저감효과를 확인할 수 있었다.

인공진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향 (Effects of Artificial Vibrations on Strength and Physical Properties of Curing Concrete)

  • 임한욱;정동호;이상은
    • 터널과지하공간
    • /
    • 제4권1호
    • /
    • pp.31-37
    • /
    • 1994
  • The effects of blasting and ground vibratons on curing concrete have not been well studied. As a results unrealistic and costly ground vibration constraints have been placed on blasting and piling when it occurs in the vicinity of curing concrete. To study the effects of ground vibrations, a shaking table was made to produce peak particle velocities in the nearly same frequency range as found in construction blasting. Concrete blocks of 33.3X27.7X16.2cm were molded and placed on the shaking table. Different sets of concrete blocks were subjected to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses were applied at two hour intervals for thirty seconds. Along with unvibrated concrete blocks, the vibrated concrete samples with 60.3mm in diameters were measured for elastic moduli, sonic velocity, tensile and uniaxial compressive strength. Test results showed that the vibrations in curing concrete generally have effects on the uniaxial compressive strength or physical properties of the concrete.

  • PDF

정적 대변형을 받고 있는 점탄성 재료의 동적 물성치 규명 시험 (Testing for Identification of Dynamic Properties of Viscoelastic Material Subject to Large Static Deformation)

  • 이완술;이호정;조지현;김진성;윤성기;김광준
    • 한국소음진동공학회논문집
    • /
    • 제13권2호
    • /
    • pp.132-143
    • /
    • 2003
  • Viscoelastic components for vibration isolation or shock absorption in automobiles, machines and buildings are often subject to a high level of static deformation. From the dynamic design point of view, it is requisite to predict dynamic complex stiffness of viscoelastic components accurately and efficiently. To this end, a systematic procedure for complex modulus measurement of the viscoelastic material under large static deformation is often required in the industrial fields. In this paper, dynamic test conditions and procedures for the viscoelastic material under small oscillatory load superimposed on large static deformation are discussed. Various standard test methods are investigated in order to select an adequate test methodology. The influence of fixed boundary condition in the compression tests upon complex stiffness are investigated and an effective correction technique is proposed. Then the uniaxial tension and compression tests are performed and its results are compared with analysis results from conventional constitutive models.