• Title/Summary/Keyword: Uniaxial Vibration Test

Search Result 26, Processing Time 0.022 seconds

Damage Count Method Using Acceleration Response for Vibration Test Over Multi-spectral Loading Pattern (복합 스펙트럼 패턴의 진동 시험을 위한 가속도 응답 데이터 기반의 피로 손상도 계산 방법)

  • Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.739-746
    • /
    • 2015
  • Several damage counting methods can be applied for the fatigue issues of a ground vehicle system using strain data and acceleration data is partially used for a high cyclic loading case. For a vibration test, acceleration data is, however, more useful than strain one owing to the good nature of signal-to-random ratio at acceleration response. The test severity can be judged by the fatigue damage and the pseudo-damage from the acceleration response stated in ISO-16750-3 is one of sound solutions for the vibration test. The comparison of fatigue damages, derived from both acceleration and strain, are analyzed in this study to determine the best choice of fatigue damage over multi-spectral input pattern. Uniaxial excitation test was conducted for a notched simple specimen and response data, both acceleration and strain, are used for the comparison of fatigue damages.

Effects of Blasting Vibrations of Physical Properties of Curing Concrete (발파진동이 양생 콘크리트의 물성에 미치는 영향)

  • Jeong, Dong Ho
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.1
    • /
    • pp.81-87
    • /
    • 1999
  • Effects of blasting vibrations on curing concrete have not been well studied. As a result, unrealistic and costly blasting vibration constraints have been placed on blasting when it occurs in the vicinity of curing concrete. To study the effects of blasting, concrete blocks of $30\times20\times20cm$ were molded and placed on the quarry Different sets of concrete blocks were subjected to peak vibrations of 0.25, 0.5, 1.0, 5.0, and 10cm/sec. The impulses of blasting vibrations were applied at thirty minutes intervals . Along with unvibrated concrete blocks, the vibrated concrete samples with 60.3mm in diameters were measured for elastic moduli, sonic velocity and uniaxial compressive strength. Test results can be summarized as follows : 1) The blasting vibrations between 6 and 8 hours after pour generally have exerted bad influences on the uniaxial compressive strength of the concrete 2) Under low vibration of 0.25cm/sec variations of the uniaxial compressive strength were not shown. As the magnitudes of blasting vibration increased, compressive strength of concrete decreased. But under the vibrations between 5 and 10cm/sec decreases in strength were almost same. 3) Physical properties of the p-wave velocity, Young's modulus, and Poisson's ratio appeared to decrease for the concrete blocks subjected to vibration for 6 to 8 hours.

  • PDF

Effects of Blasting Vibrations on Strength and Physical Properties of Curing Concrete (발파진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향)

  • 박근순
    • Explosives and Blasting
    • /
    • v.16 no.4
    • /
    • pp.18-28
    • /
    • 1998
  • Effects of blasting vibrations on curing concrete have not been well studied. As a result, unreasonable and strong blasting vibration constraints have been placed on blasting when it occur in the vicinity of curing concrete. To study the effects of blasting on curing concrete blocks of $33.3{\times}27.7{\times}16.2cm$ were molded and placed on the quarry. Several sets of concrete blocks were subjected separately to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses of blasting vibrations were applied with thirty-minute intervals. Along with unvibrated concrete blocks, the vibrated concrete samples cored with 60.3mm in diameter were measured for elastic moduli, sonic velocity and uniaxial compressive strength. Test results can be summarized as follows; 1. The blasting vibrations between 6 and 8 hours after pour generally lowered on the uniaxial compressive strength of the concrete. 2. A low blasting vibration of 0.25cm/sec did not affect the uniaxial compressive strength. As the magnitude of the blasting vibration increases, compressive strength of concrete is decreased. 3. Physical properties of the P-wave velocity, Young’s modulus, and Poisson's ratio showed a weakly decreasing trend in the concrete blocks vibrated between 6 and 8 hours after pour.

  • PDF

Effects of Blasting Vibrations on Strength and Physical Properties of Curing Concrete (발파진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향)

  • 임한욱;박근순;정동호;이상은
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.134-143
    • /
    • 1995
  • Effects of blasting vibrations on curing concrete have not been well studied. As a result, unreasonable and strong blasting vibration constraints have been placed on blasting when it occurs in the vicinity of curing concrete. To study the effects of blasting on curing concrete blocks of 33.3X27.7X16.2 cm were molded and placed on the quarry. Several sets of concrete blocks were subjected separately to peak vibrations of 0.25, 0.5. 1.0, 5.0, and 10cm/sec. The impulses of blasting vibrations were applied with thirty-minute intervals. Along with unvibrated concrete blocks, the vibrated concrete samples cored with 60.3 mm in diameter were measured for elastic moduli, sonic velocity and uniaxial compressive strength. Test results can be summarized as follows; 1. The blasting vibrations between 6 and 8 hours after pour generally lowered on the uniaxial compressive strength of the concrete. 2. A low blasting vibration of 0.25 cm/sec did not affect the uniaxial compressive strength. As the magnitude of the blasting vibration increases, compressive strength of concrete is decreased. 3. Physical properties of the P-wave velocity, Young's modulus, and Poisson's ratio showed a weakly decreasing trend in the concrete blocks vibrated between 6 and 8 hours after pour.

  • PDF

Blasting vibration coefficients and mechanical characteristics of Taegu area (대구지역지층의 지질특성과 대표암반에 대한 발파진동계수산출)

  • 안명석;김종대;김남수
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.211-217
    • /
    • 2000
  • In this, study, some laboratory tests and in-situ test were performed for Taegu area. Test blasting was conducted to determine blasting vibration coefficients. The uniaxial strength of rocks vary widely from weathered rock to extremely hard rock. Boasting vibration coefficient, K and n were 114.8, 1.48 for Sungseu site, where rocks show weathered to medium strength.

  • PDF

Shape Optimal Design of Anti-vibration Rubber Assembly in Tractor Cabin Using Taguchi Method (다구찌법을 이용한 트랙터 캐빈 방진고무의 형상최적설계)

  • Seo, Ji-Hwan;Lee, Boo-Yoon;Lee, Sanghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.34-40
    • /
    • 2019
  • We performed shape optimization of an anti-vibration rubber assembly which is used in the field option cabin of agricultural tractors to improve the vibration isolation capability. To characterize the hyper-elastic material property of rubber, we performed uniaxial and biaxial tension tests and used the data to calibrate the material model applied in the finite element analyses. We conducted a field test to characterize the input excitation from the tractor and the output response at the cabin frame. To account for the nonlinear behavior of rubber, we performed static analyses to derive the load-displacement curve of the anti-vibration rubber assembly. The stiffness of the rubber assembly could be calculated from this curve and was input to the harmonic analyses of the cabin. We compared the results with the test data for verification. We utilized Taguchi's parameter design method to determine the optimal shape of the anti-vibration rubber assembly and found two distinct shapes with reduced stiffness. Results show that the vibration at the cabin frame was reduced by approximately 35% or 47.6% compared with the initial design using the two optimized models.

A Study on the Vibration Level of Low Vibration Kinecker (미진동 Kinecker 진동수준에 관한 연구)

  • Kim, Hee-Do;Ahn, Bong-Do;Choi, Sung-Hyun
    • Explosives and Blasting
    • /
    • v.24 no.2
    • /
    • pp.65-73
    • /
    • 2006
  • Blast vibrations produced by emulsion explosives, controlled explosives and no vibration Kinecker through test blasting have been analyzed. Test area is mainly composed of andesite of which uniaxial compressive strength is $1,260kg/cm^2$. The empirical scaling formula from a logarithmic plot of peak particle velocity versus scaled distance have been determined and particle velocities with scaled distance have been evaluated for each explosive type. Vibration level of no vibracon KINECKER is lower than one of the controlled vibration blasting by about 30.71% and also lowers than one of the blasting of medium by about 50.94%.

Shape Optimal Design of Anti-Vibration Rubber Assembly to Reduce the Vibration of a Tractor Cabin (트랙터 캐빈의 진동저감을 위한 방진고무의 형상최적설계)

  • Choi, Hyo-Joon;Lee, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.657-663
    • /
    • 2018
  • In this study, shape optimization was performed to improve the vibration isolation capability of an anti-vibration rubber assembly, which is used in the field option cabin of agricultural tractors. A uniaxial tension test and biaxial tension test were performed to characterize the hyper-elastic material properties of rubber, and the data were used to calibrate the material model used in the finite element analyses. A field test was performed to quantify the input excitation from the tractor and the output response at the cabin frame. To account for the nonlinear behavior of rubber, static analyses were performed and the load-displacement curve of rubber was derived. The stiffness of the rubber was calculated from this curve and input to the harmonic analyses of the cabin. The results were verified using the test data. Taguchi's parameter design method was used to find the optimal shape of the anti-vibration rubber assembly, which indicated a shape with reduced stiffness. The vibration of the cabin frame was reduced by the optimization by as much as 35% compared to the initial design.

Effects of Artificial Vibrations on Strength and Physical Properties of Curing Concrete (인공진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향)

  • 임한욱;정동호;이상은
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 1994
  • The effects of blasting and ground vibratons on curing concrete have not been well studied. As a results unrealistic and costly ground vibration constraints have been placed on blasting and piling when it occurs in the vicinity of curing concrete. To study the effects of ground vibrations, a shaking table was made to produce peak particle velocities in the nearly same frequency range as found in construction blasting. Concrete blocks of 33.3X27.7X16.2cm were molded and placed on the shaking table. Different sets of concrete blocks were subjected to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses were applied at two hour intervals for thirty seconds. Along with unvibrated concrete blocks, the vibrated concrete samples with 60.3mm in diameters were measured for elastic moduli, sonic velocity, tensile and uniaxial compressive strength. Test results showed that the vibrations in curing concrete generally have effects on the uniaxial compressive strength or physical properties of the concrete.

  • PDF

Testing for Identification of Dynamic Properties of Viscoelastic Material Subject to Large Static Deformation (정적 대변형을 받고 있는 점탄성 재료의 동적 물성치 규명 시험)

  • 이완술;이호정;조지현;김진성;윤성기;김광준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.132-143
    • /
    • 2003
  • Viscoelastic components for vibration isolation or shock absorption in automobiles, machines and buildings are often subject to a high level of static deformation. From the dynamic design point of view, it is requisite to predict dynamic complex stiffness of viscoelastic components accurately and efficiently. To this end, a systematic procedure for complex modulus measurement of the viscoelastic material under large static deformation is often required in the industrial fields. In this paper, dynamic test conditions and procedures for the viscoelastic material under small oscillatory load superimposed on large static deformation are discussed. Various standard test methods are investigated in order to select an adequate test methodology. The influence of fixed boundary condition in the compression tests upon complex stiffness are investigated and an effective correction technique is proposed. Then the uniaxial tension and compression tests are performed and its results are compared with analysis results from conventional constitutive models.