• Title/Summary/Keyword: Unglazed Transpired Collector(UTC)

Search Result 3, Processing Time 0.019 seconds

Solar Air Heating System Thermal Performance Simulation and Verification (태양열 외기 난방 시스템의 열성능 시뮬레이션 및 검증 연구)

  • Kang, Dong-Un;Lee, Euy-Joon;Hyun, Myung-Taek
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.152-157
    • /
    • 2001
  • UTC(Unglazed Transpired Collector) system has recently emerged as a new solar air heating technology. It is relatively inexpensive because it has not a glazed material. And it demonstrates efficient particularly for the applications in which larger wall area facilities with a high outdoor air requirement. Mathematical algorithm for UTC thermal modeling has been understood for further improvement of the system. EES and TRNSYS model of actual solar wall panel could be developed for computer simulations under other conditions. Computer models could be validated with the measured data from fixed outdoor test cell in KIER(Korea Institute of Energy Research). Major design parameters could be identified such as panel configuration and absorptivity and emissivity values for UTC design.

  • PDF

Performance Monitoring Study of Unglazed Transpired Solar Air Heating Module (무창 기공형 태양열 공기 난방 모듈 성능 모니터링 연구)

  • Kang, Eun-Chul;Hyun, Myung-Taek;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.67-72
    • /
    • 2002
  • Solar Air Systems (SAS) have unique advantages for space heating and tempering ventilation air. Air, unlike water, needs no protection against freezing nor are leaks damaging to the building structure or its contents. In contrast to glazed collector, unglazed steel solar collector may have higher efficiencies over glazed flat collector due to the absence of the glass. Therefore, the monitoring of SAS is so important to evaluate actual performance of SAS for right applications. This study is to provide a testing method with a movable test cell developed in KIER to evaluate the thermal performance of SAS based on international standard method ASHRAE 93-86, "Method of Testing to Determine the Thermal Performance of Solar Collectors". The monitoring tool used advanced technique LabVIEW 6i with portable notebook computer. Sample results have been obtained to access the performance of a reference and a target SAS module. The process and tool introduced here could be used to provide a performance verification data for future implementation study applications.

A Fundamental Study for Development of Unglazed Transpired Collector Control System in Windowless Pig House (무창돈사 내 무창기공형 집열기 제어 시스템 개발을 위한 기초적 연구)

  • Moon, Byeong Eun;Kim, Hee Tae;Kim, Jong Goo;Ryou, Young Sun;Kim, Hyeon Tae
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.175-185
    • /
    • 2016
  • In this study, manufactured experimental pig house (two pig house) and compared the changes in internal temperature and energy depending on the application of UTC control system for their utilizing of them as basic data for maintaining proper conditions for feeding environment and reducing heating energy depending on the UTC control system and program development, prior to applying the UTC system into pig house, representative agricultural facility. The control system ranges T1~T4 which is made to control a total of five output signals O1~O5 in the way of On/Off by using the algorithms of the program after measuring temperature scored 4 of total. Temperature setting was controlled with 28.0℃ in experimental pig house and 34.0℃ in UTC plenum, and output signal was controlled by comparing it with the measured temperature. During 3 days, the maximum temperature were measured at an average 31.8℃ when operated the control system in pig house. At the same time, the maximum temperature were measured 36.6℃ in comparison pig house, it was low temperature at 4.8℃ in experimental pig house than comparison pig house. Also, UTC plenum temperature was showed that rose at an average 50.5℃ by operation of the control program.