• Title/Summary/Keyword: Unfolded protein response (UPR)

Search Result 44, Processing Time 0.034 seconds

Hypothermia Regulates Endoplasmic Reticulum (ER) Stress through the X-box Binding Protein-1 (XBP1) Gene Expression in PC12 Cells

  • Yoo, Bo-Kyung;Kwon, Kisang;Lee, Eun Ryeong;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.416-420
    • /
    • 2017
  • Endoplasmic reticulum (ER) stress induces unfolded protein response (UPR) via inositol-requiring enzyme 1 (IRE1) activation, which sends a molecular signal for X box-binding protein 1 (XBP1) mRNA splicing in the cytosol. IRE1 endoribonuclease activity induces cleavage of XBP1 mRNA. The XBP1 mRNA is then ligated by an uncharacterized RNA ligase and translated to produce spliced XBP1 by 23 nt removed in which contains the PstI restriction enzyme site. The splicing of XBP1 mRNA can be detected by semiquantitative RT-PCR, and then splicing of XBP1 is a useful tool to measure the genetic variability in ER stress. In this study, we have estimated IRE1-dependent splicing of XBP1 mRNA under conditions of various hypothermia. The results indicated that hypothermia regulated ER stress. This study demonstrated that hypothermia is closely related to ER stress and may be useful for early diagnosis of ER-associated disease.

Brefeldin A-induced Endoplasmic Reticulum Stress Leads to Different CHOP Expression in Primary Astrocyte Cells and C6 Glioma Cells (Astrocyte 세포와 C6 glioma 세포에서 ER stress 유도 물질 brefeldin A에 의한 CHOP 단백질의 발현 차이)

  • Park, Eun Jung;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.490-495
    • /
    • 2016
  • Brefeldin A (BFA), a lactone antibiotic isolated from the fungus Eupenicillium brefeldianum, inhibits the transport of secreted and membrane proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. BFA disrupts Golgi function, the accumulation of unfolded proteins in ER, and the induction of ER stress. Prolonged ER stress induces apoptosis at least in part through the transcription factor C/EBP (CCAAT/enhancer binding protein) homologous protein (CHOP),which is activated by the unfolded protein response (UPR). In this paper, we demonstrate that BFA-induced endoplasmic reticulum stress leads to different CHOP expression in primary astrocyte cells and C6 glioma cells. BFA induced lower CHOP expression levels in primary astrocyte cells than in C6 glioma cells; however, other ER stress inducers (thapsigargin and tunicamycin) resulted in similar expression patterns in these two cell types. Interestingly, the three different ER stress inducers (BFA, thapsigargin, and tunicamycin) induced similar levels of CHOP mRNA expression in primary astrocyte cells. The ubiquitin-proteasome inhibitor MG132 also markedly up-regulated the BFA-mediated CHOP protein expression in primary astrocyte cells. BFA also induced higher proteasome activity in primary astrocyte cells than in C6 glioma cells. Taken together, our results suggest that higher proteasomal activity might down-regulate BFA-induced CHOP expression in primary astrocyte cells.

Isolation and Characterization of a Novel Transcription Factor ATFC Activated by ER Stress from Bombyx mori Bm5 Cell Lines (누에 배양세포(Bm5)로부터 분리한 새로운 전사제어인자 ATFC의 특성분석)

  • 구태원;윤은영;김성완;최광호;황재삼;박수정;권오유;강석우
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.596-603
    • /
    • 2003
  • Cells respond to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing transcription of genes encoding molecular chaperones and folding enzymes. The information is transmitted from the ER lumen to the nucleus by intracellular signaling pathway, called the unfolded protein response (UPR). To obtain genes related to UPR from B. mori, the cDNA library was constructed with mRNA isolated from Bm5 cell lines in which N-glycosylation was inhibited by tunicamycin treatment. From the cDNA library, we selected 40 clones that differentially expressed when cells were treated with tunicamycin. Among these clones, we have isolated ATFC gene showing similarity with Hac1p, encoding a bZIP transcription factor of 5. cerevisiae. Basic-leucine zipper (bZIP) domain in amino acid sequences of ATFC shared homology with yeast Hac1p. Also, ATFC is up-regulated by accumulation of unfolded proteins in the ER through the treatment of ER stress drugs. Therefore we suggest that ATFC represents a major component of the putative transcription factor responsible for the UPR leading to the induction of ER-localized stress proteins.

Euchromatin histone methyltransferase II (EHMT2) regulates the expression of ras-related GTP binding C (RRAGC) protein

  • Hwang, Supyong;Kim, Soyoung;Kim, Kyungkon;Yeom, Jeonghun;Park, Sojung;Kim, Inki
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.576-581
    • /
    • 2020
  • Dimethylation of the histone H3 protein at lysine residue 9 (H3K9) is mediated by euchromatin histone methyltransferase II (EHMT2) and results in transcriptional repression of target genes. Recently, chemical inhibition of EHMT2 was shown to induce various physiological outcomes, including endoplasmic reticulum stress-associated genes transcription in cancer cells. To identify genes that are transcriptionally repressed by EHMT2 during apoptosis, and cell stress responses, we screened genes that are upregulated by BIX-01294, a chemical inhibitor of EHMT2. RNA sequencing analyses revealed 77 genes that were upregulated by BIX-01294 in all four hepatic cell carcinoma (HCC) cell lines. These included genes that have been implicated in apoptosis, the unfolded protein response (UPR), and others. Among these genes, the one encoding the stress-response protein Ras-related GTPase C (RRAGC) was upregulated in all BIX-01294-treated HCC cell lines. We confirmed the regulatory roles of EHMT2 in RRAGC expression in HCC cell lines using proteomic analyses, chromatin immune precipitation (ChIP) assay, and small guide RNA-mediated loss-of-function experiments. Upregulation of RRAGC was limited by the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), suggesting that ROS are involved in EHMT2-mediated transcriptional regulation of stress-response genes in HCC cells. Finally, combined treatment of cells with BIX-01294 and 5-Aza-cytidine induced greater upregulation of RRAGC protein expression. These findings suggest that EHMT2 suppresses expression of the RRAGC gene in a ROS-dependent manner and imply that EHMT2 is a key regulator of stress-responsive gene expression in liver cancer cells.

Peste des petits ruminants virus infection induces endoplasmic reticulum stress and apoptosis via IRE1-XBP1 and IRE1-JNK signaling pathways

  • Shuyi Yuan;Yanfen Liu;Yun Mu;Yongshen Kuang;Shaohong Chen;Yun-Tao Zhao;You Liu
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.21.1-21.15
    • /
    • 2024
  • Background: Peste des petits ruminants (PPR) is a contagious and fatal disease of sheep and goats. PPR virus (PPRV) infection induces endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR). The activation of UPR signaling pathways and their impact on apoptosis and virus replication remains controversial. Objectives: To investigate the role of PPRV-induced ER stress and the IRE1-XBP1 and IRE1-JNK pathways and their impact on apoptosis and virus replication. Methods: The cell viability and virus replication were assessed by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, immunofluorescence assay, and Western blot. The expression of ER stress biomarker GRP78, IRE1, and its downstream molecules, PPRV-N protein, and apoptosis-related proteins was detected by Western blot and quantitative reverse transcription-polymerase chain reaction, respectively. 4-Phenylbutyric acid (4-PBA) and STF-083010 were respectively used to inhibit ER stress and IRE1 signaling pathway. Results: The expression of GRP78, IRE1α, p-IRE1α, XBP1s, JNK, p-JNK, caspase-3, caspase-9, Bax and PPRV-N were significantly up-regulated in PPRV-infected cells, the expression of Bcl-2 was significantly down-regulated. Due to 4-PBA treatment, the expression of GRP78, p-IRE1α, XBP1s, p-JNK, caspase-3, caspase-9, Bax, and PPRV-N were significantly downregulated, the expression of Bcl-2 was significantly up-regulated. Moreover, in PPRV-infected cells, the expression of p-IRE1α, p-JNK, Bax, and PPRV-N was significantly decreased, and the expression of Bcl-2 was increased in the presence of STF-083010. Conclusions: PPRV infection induces ER stress and IRE1 activation, resulting in apoptosis and enhancement of virus replication through IRE1-XBP1s and IRE1-JNK pathways.

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

Induction of ER-stress by Heat Shock in the Thyrocytes

  • Kwon, Ki-Sang;Kwon, O-Yu;Yang, Young-Mo
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.435-438
    • /
    • 2006
  • In eukaryotes, ER stress induces UPR (unfolded protein response) via IRE1 activation which sends a molecular signal for XBP1 mRNA splicing in the cytosol. During this mRNA splicing, 23 nt removed in which contains PstI site and then resulting XBP1 product is not digested with PstI restriction enzyme. In this study, using this XBP1 mRNA splicing mechanism, the effect of heat shock on thyrocytes is studied, because heat shock response in the thyrocytes needs more study to understand thyroid physiology under alternative environments. ER inducible drugs (tunicamycin, DTT, $Ca^{2+}$ ionopore A23187, BFA) induce ER stress in the thyrocytes. From 3 hours after heat shock, ER stress is induced and which is reversible when heat shock is without. While $Ca^{2+}$ ionopore A23187 is reversible from ER stress by washing out the drug, thapsigagin is irreversible. Other ER inducible drugs are not so sensitive to ER stress repairing. XBP1 mRNA splicing in a cell is very available method to detect ER stress. It needs only a small quantity of total RNA and processing also very easy.

  • PDF

Protective Effect of Borneolum on ER Stress-induced Damage in C6 Glial Cells (ER Stress에 의해 유발된 C6 Glial Cells의 손상에 대한 용뇌(龍腦)의 보호효과)

  • Jeon, In-Cheol;Bang, Chang-Ho;Moon, Byung-Soon;Lee, In
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1368-1378
    • /
    • 2009
  • Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER response is characterized by changes in specific proteins, induction of ER chaperones and degradation of misfolded proteins. Also, the pathogenesis of several diseases like Alzheimer's disease, neuronal degenerative diseases, and diabetes reveal the role of ER stress as one of the causative mechanisms. Borneolum has been used for neuronal disease in oriental medicine. In the present study, the protective effect of borneolum on thapsigargin-induced apoptosis in rat C6 glial cells. Treatment with C6 glial cells with 5 uM thapsigargin caused the loss of cell viability, and morphological change, which was associated with the elevation of intracellular $Ca^{++}$ level, the increase in Grp78 and CHOP and cleavage of pro-caspase 12 Furthermore, thapsigargin induced Grp98, XBP1, and ATF4 protein expression in C6 glial cells. Borneolum reduced thapsigargin-induced apoptosis through ER pathways. In the ER pathway, borneolum attenuated thapsigargin-induced elevations in Grp78, CHOP, ATF4, and XBP1 as well as reductions in pro-caspase 12 levels. Also, our data showed that borneolum protected thapsigargin-induced cytotoxicity in astrocytes from rat (P3) brain. Taken together, our data suggest that borneolum is neuroprotective against thapsigargin-induced ER stress in C6 glial cells and astrocytes. Accordingly, borneolum may be therapeutically useful for the treatment of thapsigargin-induced apoptosis in central nervous system.