• Title/Summary/Keyword: Uneven Spaced Blade

Search Result 2, Processing Time 0.017 seconds

Development of Low-Noise Cooling Fan Using Uneven Fan Blade Spacing (비등간격 블레이드를 이용한 저소음 쿨링팬 개발)

  • Lee, Jeong-Han;Nam, Kyung-Ook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1109-1114
    • /
    • 2007
  • When unifying the functions of widely used two-fan, engine cooling system into a single unit, the noise and power issues must be addressed. The noise problem due to the increased fan radius is a serious matter especially as the cabin noise becomes quieter for sedans. Of the fan noise components, discrete noise at BPF's (Blade Passing Frequency) seriously degrades cabin sound quality. Unevenly spaced fan is developed to reduce the tones. The fan blades are spaced such that the center of mass is placed exactly on the fan axis to minimize fan vibration. The resulting fan noise is $3{\sim}11$ dBA quieter in discrete noise level than the even bladed fan.

  • PDF

Analysis of the Generation and Radiation of the Fan Noise by Using Commercial CFD Code (상용 CFD코드를 이용한 냉각홴 공력소음의 발생 및 방사 해석)

  • Jeon, Wan-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.13-19
    • /
    • 2002
  • In the present study, a numerical simulation is performed for the flow through a cooling fan. The computation was performed by using commercial code, STAR-CD. A rotating fan was simulated by rotational motions using MRF (Multiple Rotating Reference Frame) in a steady-state analysis and sliding interface (rotating meshes) in an unsteady-state analysis. The results of numerical computation were in good agreement with experimental data. In order to calculate the acoustic signal, the unsteady flow-field was firstly calculated. The acoustics of the fan is calculated by using acoustic analogy based on the unsteady flow-field. The predicted acoustic signal shows the characteristics of the uneven bladed-fan.