• Title/Summary/Keyword: Undrained test

Search Result 247, Processing Time 0.024 seconds

The Study on Rigidity Index of the Soft Clay in Korea (국내 연약지반의 강성지수(Ir)에 관한 연구)

  • 서수봉;윤일형;이재식;구남실
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.49-54
    • /
    • 2000
  • Several soil parameters can be calculated for results of Piezocone test; sensitivity, soil classification, OCR, undrained shear strength, coefficient of consolidation etc., and used to analysis geotechnical problems. Particularly, the coefficient of consolidation which is related to degree of consolidation varies according to rigidity index(I/sub r/). In this study, rigidity index(I/sub r/) was analyzed by Roy's formula. Trixial tests and unconfined compression tests data in the ten sites was analyzed. In conclusion, rigidity index(I/sub r/) was suggested such as rigidity index(I/sub r/) = 15∼60, average rigidity index value(I/sub r/) of approximately 33 within a country.

  • PDF

The Behavior of Undrained Pore Water Pressure in Normally Consolidated and Saturated Clay(I) - Analysis by Isotropic Loading Test - (포화된 정규압밀 점성토에서 비배수 공극수압의 거동(I) - 등방재하시험에 의한 분석 -)

  • 임성훈;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.126-136
    • /
    • 2003
  • The B value on the saturated soil is commonly known as the amount of 1. Usually this concept is consistent with the condition that effective stress is equal to zero, but it was reported in some literatures that the B value was less than 1 in spite of saturated condition in the test of very stiff material such as rock and quasi-stiff material on which the stiffness can be mobilized because of effective stress not equal to zero. In this study the B value was measured on various effective stress conditions on normally consolidated clay. The test results in the B value less than 1 in spite of perfect saturation. The measured excessive pore water pressure was not only smaller than the change of the total stress, but also the function of time on clay.

Frequency Dependence in Large Strain Range During Cyclic Triaxial Tests of Clay (점성토의 진동삼축시험시 대변형률영역에서의 주파수 의존성)

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.63-71
    • /
    • 2006
  • In the present study, the dynamic deformation characteristics of clay, including the effect of loading rate in large strain ranges, were examined by performing undrained cyclic triaxial test. The test results showed that the loading rate to failure decreased with increasing loading amplitude and decreasing loading frequency. While the stress-strain relationships was not affected by loading frequency, excess pore pressure was affected significantly with the change in loading frequency. The change for 0.1 Hz was larger for than that of 0.01 Hz, resulting in inclined effective stress paths. Furthermore, the lower the frequency was, the higher the excess pore pressure was in the first loading.

The Stress -Strain Behavior of Asan Marine Soil (아산만 해성토의 응력 -변형률 거동)

  • Hong, Chang-Su;Jeong, Sang-Seom;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.17-26
    • /
    • 1996
  • The undrained behavior of Asan marine soil was investigated by using an automated triaxial testing device. The stress-strain behavior at the preand postfailure state of marine soil under undrained compression and eatension conditions was compared with the behavior of pure silt, pure clay and the overall behavior of Asan marine soil was predicted with the modified Camflay model and the bounding surface model. The marine soil sampled in Asan bay area was clayey silts with 70oA silt-30% clay content and the testing samples were prepared in both undisturbed and remolded conditions. All samples are normally consolidated with 400 kPa of effective mean confining pressure and each sample is unloaded to 200, 100, 67 kPa, respectively. And then the shear test was performed with different confining pressure. According to experimental results, there exists an unique failure line whose slope is lower than silt's and higher than clay's. It is identified that the undrained shear strength of normally consolidated samples increases after crossing the phase transformation line because of volume dilation tendency which is not seen in clay. Overconsolidated samples show different soil behavior compared with pure silt due to its tendency of change in volume. It is also found that the overall behavior of Asan marine soil cannot be predicted precisely with the modified Cam-clay model and the bounding surface model.

  • PDF

Shear-Rate Dependent Ring-Shear Characteristics of the Waste Materials of the Imgi Mine in Busan (부산 임기광산 광미의 전단속도에 따른 링 전단특성 연구)

  • Jeong, Sueng-Won;Ji, Sang-Woo;Yim, Gil-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.5-15
    • /
    • 2014
  • Abandoned mine deposits are exposed to various physico-chemical geo-environmental hazards and disasters, such as acid mine drainage, water contamination, erosion, and landslides. This paper presents the ring shear characteristics of waste materials. The ring shear box with a rotatable O-ring was used in this study. Three tests were performed: (i) Shear stress-time relationship for given normal stress and shear speed, (ii) shear stress as a function of shear speed, and (iii) shear stress as a function of normal stress. For a given normal stress (50 kPa) and speed (0.1 mm/sec), the materials tested exhibit a strain softening behavior, regardless of drainage condition. The peak and residual shear stresses were determined for each normal stress and shear speed. The shear stress was measured when shear speed is equal to 0.01, 0.1, 1, 10, 50, 100 mm/sec or when normal stress is equal to 20, 40, 60, 80, 100, 150 kPa. From the test results, we found that the shear stress increases with increasing shear speed. The shear stress also increases with increasing normal stress. However, different types of shearing mode were observed in drained and undrained conditions. Under drained condition, particle crushing was observed from the shearing zone to the bottom of lower ring. Under undrained condition, particle crushing was observed only at the shearing zone, which has approximately 1 cm thick. It means that a significant high shear speed under undrained condition can result in increased landslide hazard.

A study on reappeared consolidation test of in-situ property and vertical deformation of sample due to stress release (1차원 압밀점토의 응력해방에 의한 수직변형량과 현장재현 압밀시험에 관한 연구)

  • Kim, Jae-Young;Takada, Naotoshi;Kang, Sang-Wook;Kim, Ki-Seop;Park, Sang-Uk;Kim, Sung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1-6
    • /
    • 2008
  • When a saturated clay is sampled in an undisturbed manner from a bore hole, the sample extends vertically and shrinks horizontally under undrained conditions due to stress release. The conventional consolidation test specimen is trimmed from the expanded sample so that its diameter is equal to the inner diameter of the consolidation test ring, this test procedure does not reproduce the actual consolidation behavior. The measurement of sample extension was conducted by means of overcoring method found that the extension strains were 1 to 2%. To simulate the in-situ consolidation behavior, the consolidation test method that uses a specimen with a slightly smaller diameter than the inside diameter of consolidometer so that the specimen expands laterally to the inside of the ring.

  • PDF

The Estimation of Initial Elastic Modulus of Clay by Standard Consolidation Test (표준압밀시험에 의한 점토의 초기탄성계수 산정)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • Unlike artificially created homogeneous materials, the process of calculating the elastic modulus of natural soil involves the possibility of errors. Because the stress-strain behavior of soil is nonlinear, the secant modulus of elasticity is often used based on 1/2 of the stress at failure. Since soil has the property of changing its elastic modulus depending on the confining pressure, numerical analysis models that analyze its behavior inevitably include complex elements. The hyperbolic model, which relatively accurately simulates the behavior immediately after loading in soft ground, assumes that the stress-strain curve of the consolidated undrained triaxial test is hyperbolic and requires the slope of the tangent line at the starting point. However, the slope of the initial tangent in the stress-strain curve obtained from an actual triaxial test is difficult to have regularity according to changes in confining pressure. Additionally, due to the characteristics of a hyperbola, even small changes in related factors cause large changes in the hyperbola. Therefore, there is a lot of randomness in the process of calculating model parameters from the triaxial test results, which causes large differences in the results. Therefore, the method of calculating the initial elastic modulus by the consolidation test presented in this study is also used to verify the method by the triaxial test. It can be applied. However, since this study was applied to only one sample showing typical consolidation characteristics, it is necessary to check samples with various physical properties in the future.

Analysis of the Behavior of Undrained Pore Water Pressure in Saturated Sand by Isotropic Loading Test (포화된 사질토에서 등방재하시험에 의한 비배수 공극수압의 거동분석)

  • Eam, Sung-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.43-52
    • /
    • 2005
  • It is known in some literatures that the B value is not equal to unity in saturated soil when effective stress is given, in which the B Value is the ratio of measured excess pore water pressure and isometric loading pressure. In this study the B value was measured on various effective stresses and on various incremental loading stresses in various grain size of specimens with saturated sand. The test results showed that the B value was affected largely by grain size of sand in specimen and the amount of effective stress. There was the semi-logarithmic relationship between B value and effective stress, and also there was the linear relationship between the gradient of the former semi-logarithmic relationship and grain size of specimen.

A Study on Stress-Strain Characteristics of Compacted Bentonite for High-Level Radioactive Waste Repository (고준위폐기물 차폐용 압축벤토나이트의 응력-변형률 거동 분석)

  • Kim, Do-Hyun;Jeong, Sang-Seom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.792-797
    • /
    • 2009
  • The stress-strain characteristics of compacted bentonite are investigated using experimental triaxial compression test by Hoek-cell. Special attention given to various dry density and water absorption ratio. Based on the test results, it is shown that the stress-strain relationship of compacted bentonite is highly influenced by dry density and water absorption ratio. Also, characteristics of Bentonite is similar to the clay rather than sand. Strength of compressed Bentonite increases with higher dry density. It shows maximum strength value, if in a same condition with dry density and constrain pressure. So we determine that value as the optimistic moisture contents for the maximun strength of compressed Bentonite.

  • PDF

Development of an integrated Web-based system with a pile load test database and pre-analyzed data

  • Chen, Yit-Jin;Liao, Ming-Ru;Lin, Shiu-Shin;Huang, Jen-Kai;Marcos, Maria Cecilia M.
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.37-53
    • /
    • 2014
  • A Web-based pile load test (WBPLT) system was developed and implemented in this study. Object-oriented and concept-based software design techniques were adopted to integrate the pile load test database into the system. A total of 673 case histories of pile load test were included in the database. The data consisted of drilled shaft and driven precast concrete pile axial load tests in drained, undrained, and gravel loading conditions as well as pre-analyzed data and back-calculated design parameters. Unified modeling language, a standard software design tool, was utilized to design the WBPLT system architecture with five major concept-based components. These components provide the static structure and dynamic behavior of system message flows in a visualized manner. The open-source Apache Web server is the building block of the WBPLT system, and PHP Web programming language implements the operation of the WBPLT components, particularly the automatic translation of user query into structured query language. A simple search and inexpensive query can be implemented through the Internet browser. The pile load test database is helpful, and data can be easily retrieved and utilized worldwide for research and advanced applications.