• Title/Summary/Keyword: Underwater simulation

검색결과 622건 처리시간 0.026초

T-S 퍼지 모델 기반 수중글라이더를 위한 추종 제어기 (Tracking Controller for Underwater Gliders Based on T-S Fuzzy Models)

  • 이경학;김도완
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.261-269
    • /
    • 2018
  • In this paper, we propose a Takagi-Sugeno (T-S) fuzzy-model-based design for the tracking control of a class of nonlinear underwater glider. By using the partial linearization and the sector nonlinearity, the underwater glider with six degrees of freedom (6 DOF) is modelled by the T-S fuzzy model. The concerned tracking control problem with $H_{\infty}$ performance is converted into the stabilization one for the error dynamics between the given nonlinear underwater glider and the reference time-varying input. Sufficient conditions are derived for the asymptotic stabilizability of the error dynamics in the format of matrix inequality. Simulation results demonstrate the effectiveness of the proposed design methodology.

생체모방형 수중다관절 로봇의 유영계획 (Swimming Plans for a Bio-inspired Articulated Underwater Robot)

  • 김희중;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.782-790
    • /
    • 2013
  • In this paper, we propose a better solution for swimming plans of an articulated underwater robot, Crabster, with a view point of biomimetics. As a biomimetic model of underwater organisms, we chose diving beetles structurally similar to Crabster. Various swimming locomotion of the diving beetle has been observed and sorted by robotics technology through experiments with a high-speed camera and image processing software Image J. Subsequently, coordinated patterns of rhythmic movements of the diving beetle are reproduced by simple control parameters in a parameter space which make it easy to control trajectories and velocities of legs. Furthermore, a simulation was implemented with an approximated model to predict the motion of the robot under development based on the classified forward and turning locomotion. Consequently, we confirmed the applicability of parameterized leg locomotion to the articulated underwater robot through the simulated results by the approximated model.

블라인드 채널추정기법(Blind Channel Identification)을 이용한 수중통신 연구 (Underwater Acoustic Communication Research using Blind Channel identification)

  • 김갑수;조아라;최영철;임용곤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.165-169
    • /
    • 2007
  • Due to the complexity of underwater acoustic channel, signal estimation in underwater acoustic communication field is considerably affected from time-varying multipath fading channels. On this reason, the original signals should have many long training signals to estimate the channel and the purposed signals, and the bit rate of signals having information may have small rate. In order to avoid this loss of efficiency in underwater communication, this paper employed a blind channel identification method which don't use training signals. Simulations have predicted performance of the employed method in multipath environment and an aquatic plant experiment has verified the simulation results.

  • PDF

비 홀로노믹 구속조건을 이용한 수중 이동체의 자세제어에 관한 연구 (A posture control for underwater vehicle with nonholonomic constraint)

  • 남택근;노영오;안병원;김철승
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 춘계학술대회 논문집
    • /
    • pp.135-140
    • /
    • 2004
  • 본 논문에서는 비 홀로노믹적인 구속조건을 갖는 수중 이동체의 위치 및 자세제어에 관한 제어기법에 대해서 논의한다. 비 홀로노믹 시스템은 적분 불가능한 구속조건으로부터 도출되어지는 시스템으로 연속시간영역의 피트백제어로는 평형점에서의 안정화제어가 불가능한 특성을 가지고 있다. 본 연구에서는 속도의 비 홀로노믹 구속조건을 가지는 수중 이동체에 대하여 체인트폼으로 변환하고 변환된 시스템에 대해 백스테핑 제어기법을 적용하여 자세제어를 행하고 수치시뮬레이션을 통하여 제어기법의 유용성을 평가하였다.

  • PDF

수중운동체의 호버링시스템을 위한 퍼지 슬라이딩 모드 제어기 설계 (A fuzzy sliding mode controller design for the hovering system of underwater vehicles)

  • 김종식;김성민
    • 제어로봇시스템학회논문지
    • /
    • 제1권1호
    • /
    • pp.25-32
    • /
    • 1995
  • Nonlinear depth control algorithms for the hovering system of underwater vehicles are presented. In this paper, a nonlinear effect in heave motion for underwater vehicles, a deadzone effect of the flow control valve in the hovering tank and an impact disturbance are considered. In this situation, in order to choose a desirable controller, sliding mode controller and fuzzy sliding mode controller are designed and compared. The computer simulation results show that the fuzzy sliding mode control system is more suitable in order to maintain a desirable depth of an underwater vehicle with a deadzone and impact disturbance.

  • PDF

T-S 퍼지 모델 기반 수중글라이더의 부력 및 모멘트 제어기 설계 (Design of Buoyancy and Moment Controllers of a Underwater Glider Based on a T-S Fuzzy Model)

  • 이경학;김도완
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2037-2045
    • /
    • 2016
  • This paper presents a fuzzy-model-based design approach to the buoyancy and moment controls of a class of nonlinear underwater glider. Through the linearization and the sector nonlinearity methodologies, the underwater glider dynamics is represented by a Takagi-Sugeno (T-S) fuzzy model. Sufficient conditions are derived to guarantee the asymptotic stability of the closed-loop system in the format of linear matrix inequality (LMI). Simulation results demonstrate the effectiveness of the proposed buoyancy and moment controllers for the underwater glider.

수중 선체에 장착된 로봇팔 궤적의 비귀환형 적응제어 (Non-regressor Based Adaptive Tracking Control of an Underwater Vehicle-mounted Manipulator)

  • 여준구
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.7-12
    • /
    • 2000
  • This paper presents a non-regressor based adaptive control scheme for the trajectory tracking of underwater vehicle-mounted manipulator systems(UVMS). The adaptive control system includes a class of unmodeled effects is applied to the trajectory control of an UVMS. The only information required to implement this scheme ios the upper bound and lowe bound of the system parameter matrices the upper bound of unmodeled effects the number of joints the position and attitude of the vehicle and trajectory commands. The adaptive control law estimates control gains defined by the combinations of the bounded constants of system parameter matrices and of a filtered error equation. To evaluate the performance of the non-regressor based adaptive controller computer simulation was performed with a two-link planar robot model mounted on an underwater vehicle. The hydrodynamic effects acting on the manipulator are included. It is assumed that the vehicle's motion is slow and can be predicted with a proper compensator.

  • PDF

수중 무선채널환경에서 주파수영역 등화기법의 심볼오율에 대한 연구 (A Study on Performance of Symbol Error Rate for Frequency Domain Eqaulization)

  • 황호선;박규태;신기철;조성일
    • 융합신호처리학회논문지
    • /
    • 제18권2호
    • /
    • pp.37-42
    • /
    • 2017
  • 본 논문에서는 수중무선통신에서 다중경로에 의해 발생하는 심볼간 간섭을 제거하기 위한 방법으로, 단일반송파 전송방식에 주파수-시간 영역 등화 기법을 결합한 주파수영역 결정궤환 등화기법에 대한 성능을 평가한다. 수중채널 모델링은 벨홉모델을 이용하였으며, 모의실험을 통해, 제안한 기법이 심볼간 간섭에 의한 신호왜곡 문제에 효율적으로 대처할 수 있는 대처할 수 있는 전송방식임을 보였다.

  • PDF

Simulation of Time Delay Communication algorithm In the Shallow Underwater Channel

  • Yoon, Byung-Woo;Eren Yildirim, Mustafa
    • 융합신호처리학회논문지
    • /
    • 제12권1호
    • /
    • pp.44-49
    • /
    • 2011
  • The need of data transmission in oceans and other underwater mediums are increasing day by day, so as the research. The underwater medium is very different from that of air. Propagation of electromagnetic wave in water or underground is very difficult because of the conductivity of the propagation materials. In this case, we usually use acoustic signals as ultrasonic but, they are not easy to transfer long distance with coherent method because of time varying multipaths, Doppler effects and attenuations. So, we use non-coherent methods such as FSK or ASK to communicate between long distances. But, as the propagation speed of acoustic wave is very slow, BW of the channel is narrow. It is very hard to guaranty the enough speed for the transmission of digital image data. In previous studies, we proposed this data communication protocol theoretically. In this paper, an underwater channel is modeled and this protocol is tested in this channel condition. The results show that the protocol is 4-6 times faster than ASK. Some relations and results are shown depending on the data length, channel length, bit rate etc.

수평 꼬리 날개의 제어를 병행하는 하이브리드 수중 글라이더의 깊이 제어 (Depth Control of a Hybrid Underwater Glider in Parallel with Control of Horizontal Tail Wing)

  • 주문갑
    • 대한임베디드공학회논문지
    • /
    • 제14권1호
    • /
    • pp.25-31
    • /
    • 2019
  • An underwater glider is a type of autonomous unmanned vehicle and it advances using a vertical zig-zag glide. For this purpose, the position of an internal battery is regulated to control its attitude, and the amount of water in a buoyancy bag is regulated to control the depth. Underwater glider is suitable for a long-distance mission for a long time, because the required energy is much smaller than the conventional autonomous unmanned vehicle using propeller propulsion system. In this paper, control of horizontal tail wing is newly added to the conventional battery position and buoyancy control. The performance of the proposed controller is shown through Matlab simulation.