• 제목/요약/키워드: Underwater shape

검색결과 147건 처리시간 0.024초

초공동(超空洞) 하의 수중 주행체 캐비테이터 형상최적설계 (Shape Optimization of Cavitator for a Supercavitating Projectile Underwater)

  • 최주호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.82-85
    • /
    • 2008
  • 수중에서 발사체가 고속으로 주행할 때 발사체의 머리 즉, 캐비테이터 만이 물과 접촉한 상태에서 커다란 공동이 발생하여 몸체 전체를 뒤덮는 초공동현상이 발생한다. 초공동 상태에서는 발사체는 저항이 감소되어 매우 빠른 속도를 낼 수 있게 된다. 더욱이 캐비테이터가 적합한 형상을 가지게 되면 매우 낮은 압력저항을 유지하고 전체적인 저항도 획기적으로 줄일 수 있기 때문에 본 연구에서는 주어진 작용환경 하에서 저항을 최소화 하기위한 최적의 캐비테이터 형상최적설계 문제를 고려하였다. 그리고 효율적인 캐비테이터 형상최적화를 위해 공동과 캐비테이터 형상을 하나의 죄적화로 변환한 동시최적화기법을 수행하였다.

  • PDF

모서리 형상에 따른 수직벽 후류특성에 관한 연구 (A Study on Wake Flow Characteristics of vertical Plate with Various Coner Shape)

  • 이철재;조대환
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.101-106
    • /
    • 2011
  • In this study, the velocity distribution according to upper side coner shape of underwater construction with rectangular cylinder was measured with PIV method and the wake flow characteristics was considered. According to the coner shape, the flow pattern of wake flow was also differed greatly and the step-shaped coner of cut-off ratio B/H=0.06 was similar in the slope shape in result.

수중 폭발 시뮬레이션을 위한 경계 요소법 기반의 수치 해석 기법 연구 (A Study on BEM-Based Numerical Simulation Technique for Underwater Explosions)

  • 정준모;이재빈
    • 대한조선학회논문집
    • /
    • 제57권5호
    • /
    • pp.271-277
    • /
    • 2020
  • Recoverability and vulnerability of navy ships under underwater explosion are critical verification factors in the acquisition phase of navy ships. This paper aims to establish numerical analysis techniques for the underwater explosion of navy ships. Doubly Asymptotic Approach (DAA) Equation of Motion (EOM) of primary shock wave and secondary bubble pulse proposed by Geers-Hunter was introduced. Assuming a non-compressive fluid, reference solution of the DAA EOM of Geers-Hunter using Runge-Kutta method was derived for the secondary bubble pulse phase with an assumed charge conditions. Convergence analyses to determine fluid element size were performed, suggesting that the minimum fluid element size for underwater explosion analysis was 0.1 m. The spherical and cylindrical fluid domains were found to be appropriate for the underwater explosion analyses from the fluid domain shape study. Because the element size of 0.1 m was too small to be applied to the actual navy ships, a very slender beam with the square solid section was selected for the study of fluid domain existence effect. The two underwater explosion models with/without fluid domain provided very similar results in terms of the displacement and stress processes.

Three dimensional reconstruction and measurement of underwater spent fuel assemblies

  • Jianping Zhao;Shengbo He;Li Yang;Chang Feng;Guoqiang Wu;Gen Cai
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3709-3715
    • /
    • 2023
  • It is an important work to measure the dimensions of underwater spent fuel assemblies in the nuclear power industry during the overhaul, to judging whether the spent fuel assemblies can continue to be used. In this paper, a three dimensional reconstruction method for underwater spent fuel assemblies of nuclear reactor based on linear structured light is proposed, and the topography and size measurement was carried out based on the reconstructed 3D model. Multiple linear structured light sensors are used to obtain contour size data, and the shape data of the whole spent fuel assembly can be collected by one-dimensional scanning motion. In this paper, we also presented a corrected model to correct the measurement error introduced by lead-glass and water is corrected. Then, we set up an underwater measurement system for spent fuel assembly based on this method. Finally, an underwater measurement experiment is carried out to verify the 3D reconstruction ability and measurement ability of the system, and the measurement error is less than ±0.05 mm.

Underwater Flight Vehicle의 지능형 심도 제어에 관한 연구 (A Study on a Intelligence Depth Control of Underwater Flight Vehicle)

  • 김현식;황수복;신용구;최중락
    • 한국군사과학기술학회지
    • /
    • 제4권2호
    • /
    • pp.30-41
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, It needs a robust performance which can get over the nonlinear characteristics due to hull shape. Second, It needs an accurate performance which has the small overshoot phenomenon and steady state error to avoid colliding with ground surface and obstacles. Third, It needs a continuous control input to reduce the acoustic noise. Finally, It needs an effective interpolation method which can reduce the dependency of control parameters on speed. To solve these problems, we propose a Intelligence depth control method using Fuzzy Sliding Mode Controller and Neural Network Interpolator. Simulation results show the proposed control scheme has robust and accurate performance by continuous control input and has no speed dependency problem.

  • PDF

수중폭발을 이용한 충격신관 작동 계측 (Measurement of the Impact Fuze Phenomena using the Underwater Explosion)

  • 최시홍
    • 한국군사과학기술학회지
    • /
    • 제17권4호
    • /
    • pp.479-484
    • /
    • 2014
  • In this paper, This study shows the content on the impact fuze test and the measurement using underwater explosion phenomena. The impact fuze has both a delay function and a super quick. Up to now, nothing but the naked eye of the observer has been used to verify performance of the impact fuze. The observer has determined the performance by the shape of the plume created from the explosion phenomenon. However, it is extremely difficult to use that method at a long range. In order to solve the problem, the measurement using the underwater explosion phenomena was tried.

축대칭 수중 운동체의 형상 변화를 고려한 초월공동 수치해석 (Numerical Analysis of Axisymmetric Supercavitating Underwater Vehicle with the Variation of Shape Parameters)

  • 박현지;김지혜;안병권
    • 대한조선학회논문집
    • /
    • 제55권6호
    • /
    • pp.482-489
    • /
    • 2018
  • Most of the numerical and experimental studies on supercavitating flows are focused on the cavitator only. However, the partial cavity growing into the supercavity is affected by the shape of the body placed behind the cavitator. In this paper, we develope a numerical method which is based on the boundary element method to predict supercavitating flow around three-dimensional axisymmetric bodies. We estimate the influence of the body shape on the supercavity growth. Here, we consider various parameters of the body such as cavitator shape, shoulder length and body diameter, and compare the results with the case of the cavitator only. In summary, it is found that the body may impede the cavity growth, the shoulder mainly affects the cavity length, and the supercavity occurring in the cone type cavitator is strongly influenced rather than that of the disk type cavitator.

Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization

  • Wang, Xinjing;Song, Baowei;Wang, Peng;Sun, Chunya
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권6호
    • /
    • pp.730-740
    • /
    • 2018
  • Hydrofoil is the direct component to generate thrust for underwater glider. It is significant to improve propulsion efficiency of hydrofoil. This study optimizes the shape of a hydrofoil using Free-Form Deformation (FFD) parametric approach and Surrogate-based Optimization (SBO) algorithm. FFD approach performs a volume outside the hydrofoil and the position changes of control points in the volume parameterize hydrofoil's geometric shape. SBO with adaptive parallel sampling method is regarded as a promising approach for CFD-based optimization. Combination of existing sampling methods is being widely used recently. This paper chooses several well-known methods for combination. Investigations are implemented to figure out how many and which methods should be included and the best combination strategy is provided. As the hydrofoil can be stretched from airfoil, the optimizations are carried out on a 2D airfoil and a 3D hydrofoil, respectively. The lift-drag ratios are compared among optimized and original hydrofoils. Results show that both lift-drag-ratios of optimized hydrofoils improve more than 90%. Besides, this paper preliminarily explores the optimization of hydrofoil with root-tip-ratio. Results show that optimizing 3D hydrofoil directly achieves slightly better results than 2D airfoil.

Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권1호
    • /
    • pp.44-56
    • /
    • 2012
  • Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys$^{TM}$. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters.

VP-BEM 기법을 이용한 초공동 수중 운동체의 형상 및 수심 변화에 따른 수치해석 (Numerical Analysis of the Supercavitating Underwater Vehicle According to Different Shapes and Depth Conditions Using a VP-BEM Method)

  • 황대규;안병권;박정훈;전윤호;황종현
    • 한국군사과학기술학회지
    • /
    • 제24권2호
    • /
    • pp.237-244
    • /
    • 2021
  • In recent years, the maturity of the technology for a high speed underwater vehicle using supercavitation increase, it is entering the stage of applied research for practical use. In this study, hydrodynamic performance of the supercavitating object was evaluated by using a Viscous-Potential based Boundary Element Method(VP-BEM). 27 models with different shape parameters such as body diameter, length and fore-body shape were considered. The process of the supercavity development of each model was simulated, and drag generated according to operating conditions such as changes in water depth was analyzed.