• 제목/요약/키워드: Underwater shape

검색결과 148건 처리시간 0.025초

리야푸노프 직접법에 의한 수중 글라이더의 깊이 제어 (Depth Control of Underwater Glider by Lyapunov's Direct Method)

  • 주문갑
    • 대한임베디드공학회논문지
    • /
    • 제12권2호
    • /
    • pp.105-112
    • /
    • 2017
  • To control the depth of an underwater glider, a control method by using Lyapunov's direct method is proposed. The underwater glider has a torpedo-shape hull, a movable mass in the hull, and an inflatable buoyancy bag in the hull, but doesn't have large wings that increase the lift force for the conventional underwater glider. The control laws to adjust the position of the movable mass and the mass of the inflatable buoyancy bag are derived. For a selected speed and an angle of attack, we simulated the operation of the underwater glider using Matlab/Simulink. The efficiency of the proposed controller is shown in the fact that the control effort is active during only a short period of time when the zigzag trajectory is changed from downward to upward or vice versa.

수중 구조물 형상의 영상 정보를 이용한 수중로봇 위치인식 기법 (Localization of AUV Using Visual Shape Information of Underwater Structures)

  • 정종대;최수영;최현택;명현
    • 한국해양공학회지
    • /
    • 제29권5호
    • /
    • pp.392-397
    • /
    • 2015
  • An autonomous underwater vehicle (AUV) can perform flexible operations even in complex underwater environments because of its autonomy. Localization is one of the key components of this autonomous navigation. Because the inertial navigation system of an AUV suffers from drift, observing fixed objects in an inertial reference system can enhance the localization performance. In this paper, we propose a method of AUV localization using visual measurements of underwater structures. A camera measurement model that emulates the camera’s observations of underwater structures is designed in a particle filtering framework. Then, the particle weight is updated based on the extracted visual information of the underwater structures. The proposed method is validated based on the results of experiments performed in a structured basin environment.

딥러닝을 위한 모폴로지를 이용한 수중 영상의 세그먼테이션 (Segmentation of underwater images using morphology for deep learning)

  • 이지은;이철원;박석준;신재범;정현기
    • 한국음향학회지
    • /
    • 제42권4호
    • /
    • pp.370-376
    • /
    • 2023
  • 수중영상은 수중 잡음과 낮은 해상도로 표적의 형상과 구분이 명확하지 않다. 그리고 딥러닝의 입력으로 수중영상은 전처리가 필요하며 Segmentation이 선행되어야 한다. 전처리를 하여도 표적은 명확하지 않으며 딥러닝에 의한 탐지, 식별의 성능도 높지 않을 수 있다. 따라서 표적을 구분하며 명확하게 하는 작업이 필요하다. 본 연구에서는 수중영상에서 표적 그림자의 중요성을 확인하고 그림자에 의한 물체 탐지 및 표적 영역 획득, 그리고 수중배경이 없는 표적과 그림자만의 형상이 담긴 데이터를 생성하며 더 나아가 픽셀값이 일정하지 않은 표적과 그림자 영상을 표적은 흰색, 그림자는 흑색, 그리고 배경은 회색의 3-모드의 영상으로 변환하는 과정을 제시한다. 이를 통해 딥러닝의 입력으로 명확히 전처리된 판별이 용이한 영상을 제공할 수 있다. 또한 처리는 Open Source Computer Vision(OpenCV)라이브러리의 영상처리 코드를 사용했으면 처리 속도도 역시 실시간 처리에 적합한 결과를 얻었다.

기하학적 구조에 따른 압력이 기체-액체 경계면에 미치는 특성 해석 (Analysis for the influence of geometric characteristics on air-liquid interface with pressure)

  • 허필우;박인섭
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2011년도 전기공동학술대회 논문집
    • /
    • pp.213-213
    • /
    • 2011
  • Hydrophobic hairs of some insects make bubbles underwater. These bubbles makes possible for insects to breathe underwater. In this thesis, influence of geometric characteristics on air-liquid interface with pressure is investigated. Air-liquid interface shape with hair diameter over distance between hairs is analyzed This results expects to be used in the developments of artificial gill technology.

  • PDF

초공동(超空洞) 하의 수중 주행체 캐비데이터 형상최적설계 (Shape Optimization of Cavitator for a Supercavitating Projectile Underwater)

  • ;최주호
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1566-1573
    • /
    • 2004
  • When a projectile travels at high speed underwater, supercavitating flow arises, in which a huge cavity is generated behind the projectile so that only the nose, i.e., the cavitator, of the projectile is wetted, while the rest of it should be surrounded by the cavity. In that case, the projectile can achieve very high speed due to the reduced drag. Furthermore if the nose of the body is shaped properly, the attendant pressure drag can be maintained at a very low value, so that the overall drag is also reduced dramatically. In this study, shape optimization technique is employed to determine the optimum cavitator shape for minimum drag, given certain operating conditions. Shape optimization technique is also used to solve the potential flow problem fur any given cavitator, which is a free boundary value problem having the cavity shape as unknown a priori. Analytical sensitivities are derived for various shape parameters in order to implement a gradient-based optimization algorithm. Simultaneous optimization technique is proposed for efficient cavitator shape optimization, in which the cavity and cavitator shape are determined in a single optimization routine.

초공동(超空洞) 하의 수중 주행체 캐비테이터 형상최적설계 (Shape Optimization of Cavitator for a Supercavitating Projectile Underwater)

  • 최주호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1876-1881
    • /
    • 2003
  • When a projectile travels at high speed underwater, supercavitating flow arises, in which a huge cavity is generated behind the projectile so that only the nose, i.e., the cavitator, of the projectile is wetted, while the rest of it should be surrounded by the cavity. In that case, the projectile can achieve very high speed due to the reduced drag. Furthermore if the nose of the body is shaped properly, the attendant pressure drag can be maintained at a very low value, so that the overall drag is also reduced dramatically. In this study, shape optimization technique is employed to determine the optimum cavitator shape for minimum drag, given certain operating conditions. Shape optimization technique is also used to solve the potential flow problem for any given cavitator, which is a free boundary value problem having the cavity shape as unknown a priori. Analytical sensitivities are derived for various shape parameters in order to implement a gradient-based optimization algorithm. Simultaneous optimization technique is proposed for efficient cavitator shape optimization, in which the cavity and cavitator shape are determined in a single optimization routine.

  • PDF

영상 소나를 이용한 수중 물체 외형 복원에 관한 기초 실험 (Experimental results on Shape Reconstruction of Underwater Object Using Imaging Sonar)

  • 이영준;김태진;최진우;최현택
    • 전자공학회논문지
    • /
    • 제53권10호
    • /
    • pp.116-122
    • /
    • 2016
  • 본 논문은 수중에서 사용되는 영상 소나를 이용하여 수중 물체의 외형 복원을 수행하여 보고 그 결과를 분석한다. 일반적으로 해양 측량에 많이 사용되는 다중빔 해양 측심기(Multi-beam echo sounder, MES)보다 더 자세한 수중 환경 관찰이 가능한 영상 소나는 상하 방사영역 정보의 불확실성으로 인해 3차원 복원 연구로 활용되기에 어려움이 있다. 이에 본 논문에서는 소나 영상에서 얻는 물체에 대한 3차원 높이 정보의 불확실성을 줄이기 위해 영상 소나의 상하 방사영역을 좁게 조정하여 영상 소나의 3차원 물체 외형 복원의 어려움을 극복하고자 한다. 또한, 음향 채널별 잡음 제거 필터를 적용하고, 음향 채널별 상호보완 거리값 검출 방법의 적용을 통해 3차원 위치 정보의 정확도를 높이고자 한다. 제안한 수중 물체 외형 복원 방법은 3가지 물체(원뿔, 구, 기둥)에 대해 3차원 복원 실험을 수행하여 보고 그 결과를 분석하였다.

수중음향 분석을 통한 충격신관 지연기능 시험평가 (Test and Evaluation for Time Delay Function of Point Detonating Fuze by Underwater Sound Analysis)

  • 나태흠;장요한;정지훈;김관주
    • 한국군사과학기술학회지
    • /
    • 제20권2호
    • /
    • pp.217-224
    • /
    • 2017
  • This study proposes an evaluation method for time delay function(TDF) of Point Detonation(PD) fuse using underwater explosion and water entry phenomena. Until now, nothing but the naked eyes of an observer or video images have been used to determine whether the TDF of PD fuze is operated or not. The observer has verified the performance of TDF by analysing the shape of the plume formed by underwater explosion. However, it is very difficult to evaluate the TDF of PD fuse by these conventional methods. In order to overcome this issue, we propose a method using underwater sound signal emitted from the underwater explosion of high explosive charge. The result shows that the measured sound signal is in accord with the physical phenomena of water entry of warhead as well as underwater explosion. Also, from the hypothesis test of bubble period, difference on underwater sound analysis between dud event and delay one is proved.

Edge Line Information based Underwater Landmark for UUV

  • Yu, Son-Cheol;Kang, Dong-Joung;Kim, Jae-Soo
    • International Journal of Ocean System Engineering
    • /
    • 제1권2호
    • /
    • pp.68-75
    • /
    • 2011
  • This paper addresses an underwater landmark for updating UUV positioning information. A method is proposed in which the landmark's cubic shape and edge are recognized. The reliability, installation load, and management of landmark design were taken into consideration in order to assess practical applications of the landmark. Landmark recognition was based on topological features. The straight line recognition confirmed the landmark's location and enabled an UUV to accurately estimated its underwater position with respect to the landmark. An efficient recognition method is proposed, which provides real-time processing with limited UUV computing power. An underwater experiment was conducted in order to evaluate the proposed method's reliability and accuracy.

Robust singular perturbation control for 3D path following of underactuated AUVs

  • Lei, Ming;Li, Ye;Pang, Shuo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.758-771
    • /
    • 2021
  • This paper presents a novel control scheme for the three-dimensional (3D) path following of underactuated Autonomous Underwater Vehicle (AUVs) subject to unknown internal and external disturbances, in term of the time scale decomposition method. As illustration, two-time scale motions are first artificially forced into the closed-loop control system, by appropriately selecting the control gain of the integrator. Using the singular perturbation theory, the integrator is considered as a fast dynamical control law that designed to shape the space configuration of fast variable. And then the stabilizing controller is designed in the reduced model independently, based on the time scale decomposition method, leading to a relatively simple control law. The stability of the resultant closed-loop system is demonstrated by constructing a composite Lyapunov function. Finally, simulation results are provided to prove the efficacy of the proposed controller for path following of underactuated AUVs under internal and external disturbances.