• 제목/요약/키워드: Underwater remote sensing

검색결과 33건 처리시간 0.022초

조식동물 탐지 및 모니터링을 위한 딥러닝 기반 객체 탐지 모델의 강인성 평가 (Evaluation of Robustness of Deep Learning-Based Object Detection Models for Invertebrate Grazers Detection and Monitoring)

  • 박수호;김흥민;김탁영;임재영;장선웅
    • 대한원격탐사학회지
    • /
    • 제39권3호
    • /
    • pp.297-309
    • /
    • 2023
  • 최근 조식동물로 인한 갯녹음 현상으로 인해 연안 생태계 및 어장환경의 황폐화가 가속화되고 있다. 이러한 갯녹음 현상을 모니터링하고 방지대책을 세우기 위해서는 광범위한 해역에 대한 원격탐사 기반의 모니터링 기술 도입이 필요하다. 본 연구에서는 수중에서 촬영된 동영상으로부터 조식동물을 탐지하고 모니터링하기 위한 딥러닝 기반 객체 탐지 모델의 강인성(robustness)을 비교 분석하였다. 우리나라 연안의 대표적인 조식동물 7종을 대상으로 이미지 데이터셋을 구축하였으며, 이를 활용하여 딥러닝 기반 객체 탐지 모델인 You Only Look Once (YOLO)v7과 YOLOv8을 훈련시켰다. 총 6개의 YOLO 모델(YOLOv7, YOLOv7x, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x)에 대해 탐지 성능과 탐지 속도를 평가하였으며, 수중환경에서 촬영 시 발생할 수 있는 다양한 이미지 왜곡에 대해서 강인성 평가를 실시하였다. 평가결과 YOLOv8 계열 모델이 파라미터(parameter) 수 대비 더 높은 탐지 속도(약 71-141 FPS [frame per second])를 보였다. 탐지 성능에 있어서도 YOLOv8 계열 모델(mean average precision [mAP] 0.848-0.882)이 YOLOv7 계열 모델(mAP 0.847-0.850)에 비해 더 높은 성능을 보이는 것을 확인하였다. 모델의 강인함에 있어서 형태 왜곡에 대해서는 YOLOv7 계열 모델이 YOLOv8 계열 모델에 비해 강인한 것을 확인하였으며, 색상 왜곡에 대해서는 YOLOv8 계열 모델이 상대적으로 강인한 것을 확인 하였다. 따라서 실해역에서 수중 영상 촬영 시, 형태 왜곡은 발생 빈도가 낮으며 색상 왜곡은 연안에서 빈번하게 발생한다는 점을 고려했을 때, 연안해역에서 조식동물 탐지와 모니터링을 위해서는 YOLOv8 계열 모델을 활용하는 것이 타당한 것으로 판단된다.

An Angular Independent Backscattered Amplitude Imagery of Multi-Beam Echo Sounder for Sediment Boundary Extraction

  • Park, Jo-Seph;Kim, Hi-Kil;Park, Seong-ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.663-663
    • /
    • 2002
  • The National Oceanographic Research Institute of KOREA started to survey for the basic data necessary to territorial sea and EEZ identification and marine development with Multi-Beam Echo Sounder(L3 SeaBeam 2112) since 1996. The Multi-Beam surveys has provided a very new and precise way of describing the morphology and nature of the underwater seabed. Multi-Beam Echo Sounder systems employ sound waves propagating at angles which vary from vertical to nearly horizontal. The locations on the bottom where echoes are generated cover a swath whose port to starboard width may be equal to many times the water depth. Newer Multi-beam bathymetric sonars provide both a beam by beam depth and backscatter amplitude of the bottom. But The backscattered amplitude didn't use for identification of bottom properties because backscatter amplitude effects by the many environmental variables of underwater and seabed. We investigates the utilization of geo-referenced backscatter amplitude and analysis of relationship between The Backscattered Amplitude and Sidescan Sonar imagery from Sea Beam 2112. For the backscattered amplitude imagery mainly represents the properties of sediment, we computed the beam geometry, time-varied amplifier gain, and mainly incidence angle to the topography using bathymetric model at each ping. In this paper, those issues are illustrated, and the angular independent imagery based on swath topographic model is described.

  • PDF

수중 광통신 환경에서 최적 파장을 도출하기 위한 실험적 해석 (Experimental Analysis to Derive Optimal Wavelength in Underwater Optical Communication Environment)

  • 곽동현;전승일;최정락;한민석
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.478-488
    • /
    • 2023
  • 본 논문은 수중 환경에서의 전통적인 음파 통신을 대체할 수 있는 레이저 통신의 해군 적용 방안을 연구한다. 아두이노 및 MATLAB을 활용한 레이저 송수신기를 구성하여 수조 실험을 진행하여 다양한 수중 환경에서 통신 가능 여부를 확인하였다. 첫 번째 실험에서는 레이저를 통해 데이터를 전송할 때, 통신 간 원하는 메시지를 데이터화하여 전송하고 이를 수신하여 올바른 메시지로 변환되는지 확인하였다. 두 번째 실험에서는 수중 상황에서의 통신 작동 여부를 확인하였으며, 세 번째 실험에서는 CDS 조도 센서 모듈을 사용하여 빛의 세기를 측정하고 다양한 수중 상황에서 레이저 통신의 한계를 측정하여 확인하였다. 또한, MATLAB Code를 활용해 염도, 수온, 수심 등의 데이터를 수집하여 탁도를 계산하고 계산된 탁도(5, 20, 55, 180)에 대해서 최적의 파장값(532nm, 633nm, 785nm, 1064nm)을 제시하였다. 이를 바탕으로 해군 전술 통신, 원격 센싱, 수중 드론 제어 등의 분야에서의 활용방안을 중점적으로 분석한다. 마지막으로 현재의 기술 한계를 극복하고 성능을 향상하는 개선방안을 제시하였다.

SeaBeam2000 다중빔 음향측심기를 이용한 해저면 맵핑시스템 개발 (Development of a Seabed Mapping System using SeaBeam2000 Multibeam Echo Sounder Data)

  • 박요섭;김학일;이용국;석봉출
    • 대한원격탐사학회지
    • /
    • 제11권3호
    • /
    • pp.129-145
    • /
    • 1995
  • 다중빔 음향측심기인 SeaBeam2000은 차세대 해저면 맵핑시스템으로써, 단일 탐사폭이 121개의 빔으로 구성되어 탐사선의 수직방향을 중심으로 좌우 60도씩의 해저면을 탐사할 수 있 다. 이 장비는 현재 한국해양연구소의 온누리호에 설치되어 운영되고 있으며, 다른 해저면 탐사장 비에 비하여 짧은 기간 동안 넓은 해역에 대하여 고질의 해저 수심자료와 음압자료를 동시에 공 급한다. 본 연구의 목적은 이러한 복합적인 다중빔 해저자료를 디지탈 신호처리 기술을 이용하여 처리하는 시스템을 개발하는 것이다. 본 논문에서는 다중빔 음향측심 자료를 이용한 해저면 맵핑 시스템의 처리과정을 소개하고, 동해 일부해역(북위 37도00분 - 37도30분, 경도 129도40분 - 130 도40분)을 탐사하고 얻어진 다중빔 음향측심 자료를 개발된 시스템으로 처리한 결과를 2차원 및 3차원 영상으로 보여준다.

미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합 (Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs)

  • 이희진;서찬양;조정호;남원호
    • 대한원격탐사학회지
    • /
    • 제39권5_4호
    • /
    • pp.1135-1144
    • /
    • 2023
  • 국내 농업용 저수지는 1970년 이전에 축조되어 준공 년도가 50년 이상 된 노후화된 시설이 대다수이며, 소규모 저수지는 기본 제원 및 수위 등을 파악할 수 있는 계측시스템이 없는 미계측 저수지이다. 준공 이후 호우발생 시 퇴적된 토사 유입, 퇴사량 증가에 따른 저수지 용량 감소 및 산업 고도화에 따른 수질악화 등은 저수지의 용수공급능력을 저하시키고 형상 변화를 야기한다. 따라서, 디지털 정보 및 원격탐사 정보를 결합한 계측 기술을 활용하여 미계측 저수지 수체 모니터링을 위한 공간정보 구축 방안이 필요하다. 본 연구에서는 지표면의 고도정보와 형태를 파악할 수 있는 Light Detection And Ranging (LiDAR) 센서를 활용하여 저수지 시설물의 고해상도 Digital Surface Model (DSM), Digital Elevation Model (DEM) 자료를 구축하고, 멀티빔(MultiBeam) 음향 측심기 기반 수심측량 정보의 융합을 통해 디지털 공간정보 융합 방안을 제시하고자 한다. 드론용 LiDAR를 활용하여 공간해상도 50 cm의 DSM 및 DEM 자료를 구축하여, 저수지 제방, 여수로, 용수로 등의 수리시설물의 디지털 공간정보를 구축하였다. 다분광 영상을 활용하여 수체를 탐지하기 위해 정규식생지수(Normalized Difference Vegetation Index, NDVI), 정규수분지수(Normalized Difference Water Index, NDWI)를 산정하여, 저수지의 수표면을 산정하였다. 또한, 고해상도 DEM 자료는 수심측량 자료와 융합하여 수심도를 작성하였으며, Triangulated Irregular Network (TIN)로부터 저수지 만수면적 및 체적을 산정하였다. LiDAR 센서 및 멀티빔 기반의 수심측량, 광학위성자료 영상 및 다중분광 드론영상을 활용한 수체 탐지 기술 등의 공간정보 융합은 미계측 저수지의 디지털 인프라를 구축하여 저수지의 가용용수공급능력을 모니터링 하기 위한 기초자료로서 활용성이 높을 것으로 사료된다.

HRNet 기반 해양침적쓰레기 수중영상의 의미론적 분할 (Semantic Segmentation of the Submerged Marine Debris in Undersea Images Using HRNet Model)

  • 김대선;김진수;장성웅;박수호;공신우;곽지우;배재구
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1329-1341
    • /
    • 2022
  • 해양환경 및 해양생태계를 파괴하고 해양사고의 원인이 되는 해양쓰레기는 매년 늘어나고 있으나 그 중 해양침적쓰레기는 해저에 위치해 있어 파악과 수거에 어려움이 있다. 이에 효율적인 수거와 분포량 파악을 위해 수중촬영 이미지를 이용하여 폐그물과 폐밧줄을 대상으로 딥러닝 기반의 의미론적 분할을 실험하였다. 분할에는 최신 딥러닝 기법인 high-resolution network (HRNet)을 사용하고 최적화 알고리즘(optimizer) 별 성능 비교를 하였다. 분할 결과 그물에서는 adaptive moment estimation (Adam), Momentum, stochastic gradient descent(SGD) 순으로 F1 score=(86.46%, 86.20%, 85.29%), IoU=(76.15%, 75.74%, 74.36%) 이며, 밧줄은 F1 score=(80.49%, 80.48%, 77.86%), IoU=(67.35%, 67.33%, 63.75%)로 그물과 밧줄에서 모두 Adam의 결과가 가장 높게 나타났다. 연구 결과를 통해 optimizer 별 분할 성능 평가와 최신 딥러닝 기법의 해양침적쓰레기 분할에 대한 가능성을 확인하였다. 이에 따라 수중촬영 이미지를 통한 해양침적쓰레기 식별에 최신 딥러닝 기법을 적용시킴으로써 육안을 통한 식별보다 정확하고 효율적인 식별을 통해 해양침적쓰레기의 분포량 산정에 기여할 수 있을 것으로 사료된다.

YOLOv5와 YOLOv7 모델을 이용한 해양침적쓰레기 객체탐지 비교평가 (A Comparative Study on the Object Detection of Deposited Marine Debris (DMD) Using YOLOv5 and YOLOv7 Models)

  • 박강현;윤유정;강종구;김근아;최소연;장선웅;박수호;공신우;곽지우;이양원
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1643-1652
    • /
    • 2022
  • 해양생태계 및 수산자원, 해상안전에 부정적인 영향을 미치는 해양침적쓰레기는 주로 음파탐지기, 인양틀 및 잠수부를 통해 탐지되고 있다. 시간과 비용을 고려하여 최근에는 수중영상과 인공지능을 결합한 방법이 시도되고 시작했다. 본 연구에서는 효율적이고 정확한 해양침적쓰레기 탐지를 위하여, 수중영상과 딥러닝 객체탐지 모델인 You Only Look Once Version 5 (YOLOv5)와 You Only Look Once Version 7 (YOLOv7)을 학습 및 비교평가를 수행하였다. 유리, 금속, 어망, 타이어, 나무, 플라스틱 등의 객체탐지에 있어, 두 모델 모두 0.85 이상의 Mean Average Precision (mAP@0.5)를 기록하였다. 향후 영상자료 용량이 충분해지면, 보다 객관적인 성능평가 및 모델 개선이 가능할 것으로 사료된다.

원거리의 물과 오일을 구별할 수 있는 UV형광측정시스템 개발과 분석에 대한 연구 (Long Distance Identification of Water and Oil using an Ultraviolet Fluorescence Measurement System)

  • 백경훈;이준석;전수정;박보람;박성욱
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.266-270
    • /
    • 2022
  • Owing to the rising volume of seaborne trade, oil spills damage the marine environment for over 250 yearly. Thus, various analysis methods such as the Fourier-transform infrared (FTIR), Raman spectroscope, and gas chromatography are used to monitor oil spills at sea, but these methods are expensive. Recently, to reduce operational costs, an underwater fluorometer was adopted. However, this approach is not ideal for the remote sensing of oil spills because the device gets submerged in the sea. In this study, we have designed and developed a monitoring system that uses ultraviolet fluorescence to detect spilled oil or water from a distance, as well as proposed an analyzing method defining based on water Raman signal and QF535. Each fluorescence spectrum of water, oil (crude oil), and Bunker A was obtained using the system, and was calculated and analyzed from the spectrum individually. Based on the results of the analysis, we could successfully identity water and oil at a long distance.

광학위성영상의 해상도에 따른 논지역의 정규식생지수 비교 (Comparison of NDVI in Rice Paddy according to the Resolution of Optical Satellite Images)

  • 은정;김선화;민지은
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1321-1330
    • /
    • 2023
  • 정규식생지수는 농업분야에 가장 많이 사용된 원격탐사 자료로, 현재 대부분의 광학위성에서 제공되고 있다. 특히 고해상도 광학위성영상이 제공되면서 농업 활용 분야에 따른 최적의 광학위성영상의 선택이 매우 중요한 이슈가 되었다. 본 연구에서는 국내 논지역의 정규식생지수 모니터링 시 가장 최적의 광학위성영상을 정의하고 이를 위해 필요한 해상도 관련 요구조건을 도출하고자 한다. 이를 위해 전 세계적으로 많이 사용되는 MOD13, Landsat-8, Sentinel-2A/B, PlanetScope 위성의 정규식생지수영상을 대상으로 국내 당진 논지역의 공간분포 및 2019년부터 2022년까지 시계열 패턴을 비교, 분석하였다. 각 자료는 3-250 m의 공간해상도와 다양한 주기해상도로 제공되며, 정규식생지수를 산출할 때 사용되는 분광밴드의 영역도 약간의 차이가 있다. 분석 결과 Landsat-8은 가장 낮은 정규식생지수 값을 나타내며 공간적으로 변이도 매우 낮았다. 이에 비해 MOD13 정규식생지수 영상은 PlanetScope 자료와 비슷한 공간분포 및 시계열 패턴을 나타났으나 낮은 공간해상도로 인해 논 주변지역의 영향을 받았다. Sentinel-2A/B는 넓은 근적외선밴드 영역으로 인해 상대적으로 약간 낮은 정규식생지수 값을 나타내었으며, 특히 생육 초기시기에 그 특징이 두드러졌다. PlanetScope의 정규식생지수가 상세한 공간적 변이 및 안정적인 시계열 패턴을 제공하나 높은 구매가격을 고려하면 공간적으로 균일한 논지역보다는 밭지역에서 그 활용성이 높을 것으로 사료된다. 이에 따라 국내 논지역에 대해서는 250 m급 MOD13 정규식생지수나 10 m급 Sentinel-2A/B가 가장 효율적일 것으로 사료되나 작물의 개체에 대한 상세 물리량 추정을 위해서는 고해상도 위성영상이 활용될 수 있다.

농작물 모니터링을 위한 점수기반 식생지수 합성기법의 개발 (Development of Score-based Vegetation Index Composite Algorithm for Crop Monitoring)

  • 김선화;은정
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1343-1356
    • /
    • 2022
  • 광학위성영상을 이용해 농작물을 모니터링 할 때 가장 문제가 되는 것은 구름이나 그림자이다. 구름과 그림자의 영향을 줄이기 위해 일정 주기동안 최대 정규식생지수를 선택하는 합성기법이 사용되었다. 그러나, 본 방법은 구름의 영향을 줄이기는 하나, 일정 주기 동안 최대 정규식생지수(Normalized Difference Vegetation Index, NDVI)값만을 사용하기 때문에 NDVI가 감소하는 현상을 신속히 보여주기 어렵다. 이에 따라, 구름의 영향을 최소화하면서 식생의 분광정보를 최대한 유지하기 위한 방안으로 합성 시 여러 환경인자를 정의하고, 이에 대한 점수를 부여하여 합성 시 가장 적합한 화소를 선택하는 방법인 점수 기반 합성기법이 제시되었다. 본 연구에서는 Sentinel-2A/B Level2A 반사율 영상과, 부가정보로 제공되는 구름, 그림자, Aerosol Optical Thickness(AOT), 촬영날짜, 센서천정각 등을 이용한 점수 기반 식생지수 합성기법을 개발하였다. 2021년동안 당진 논지역과 태백 고랭지 배추밭을 대상으로 15일 주기와 한달 주기로 점수기반 합성기법을 적용한 결과, 구름의 영향을 받은 우기만을 제외하고 15일 주기 합성 시 한달 주기에 비해 보다 빠르고 자세한 NDVI값의 변화를 볼 수 있었다. 특정 영상에서는 합성 NDVI영상에서 부분적으로 날짜별 차이가 나타나 공간적으로 이질적인 부분이 보이기도 하는데, 이는 사용한 구름, 그림자 정보의 부정확성으로 인한 것으로 사려된다. 향후 입력정보의 정확도를 향상시키고, Maximum NDVI Composite (MNC) 기반 합성기법과 정량적 비교를 수행할 예정이다.