• 제목/요약/키워드: Underwater remote sensing

검색결과 33건 처리시간 0.022초

Ship Monitoring around the Ieodo Ocean Research Station Using FMCW Radar and AIS: November 23-30, 2013

  • Kim, Tae-Ho;Yang, Chan-Su
    • 대한원격탐사학회지
    • /
    • 제38권1호
    • /
    • pp.45-56
    • /
    • 2022
  • The Ieodo Ocean Research Station (IORS) lies between the exclusive economic zone (EEZ) boundaries of Korea, Japan, and China. The geographical positioning of the IORS makes it ideal for monitoring ships in the area. In this study, we introduce ship monitoring results by Automatic Identification System (AIS) and the Broadband 3GTM radar, which has been developed for use in small ships using the Frequency Modulated Continuous Wave (FMCW) technique. AIS and FMCW radar data were collected at IORS from November 23th to 30th, 2013. The acquired FMCW radar data was converted to 2-D binary image format over pre-processing, including the internal and external noise filtering. The ship positions detected by FMCW radar images were passed into a tracking algorithm. We then compared the detection and tracking results from FMCW radar with AIS information and found that they were relatively well matched. Tracking performance is especially good when ships are across from each other. The results also show good monitoring capability for small fishing ships, even those not equipped with AIS or with a dysfunctional AIS.

황해 중부 연안 해역에서의 해색센서용 하향 확산 감쇠계수 및 수중시계 추정 알고리즘 개발 (Development $K_d({\lambda})$ and Visibility Algorithm for Ocean Color Sensor Around the Central Coasts of the Yellow Sea)

  • 민지은;안유환;이규성;유주형
    • 대한원격탐사학회지
    • /
    • 제23권4호
    • /
    • pp.311-321
    • /
    • 2007
  • 해수 속으로 입수된 하향 태양에너지 (down-welling irradiance)가 수심이 깊어짐에 따라 확산 소산되는 정도를 나타내는 하향 확산 감쇠계수 (Diffuse attenuation coefficient of down-welling irradiance, $K_d({\lambda})$)와 해수 속에서의 가시거리를 나타내는 수중시계는 수중에서의 광학적 성격을 나타내는 중요한 지수이다. 이러한 $K_d({\lambda})$ 및 수중시계에 대한 많은 연구가 세계적으로 여러 해역에 대해 수행되어 왔지만 우리나라 연안 해역을 대상으로 하는 연구는 매우 적은 실정이다. 따라서 본 연구에서는 우리나라의 황해 중부해역을 대상으로 $K_d({\lambda})$ 및 수중시계를 관측하였고, 해색위성용 $K_d({\lambda})$ 및 수중시계 알고리즘을 개발하였다. $K_d({\lambda})$ 및 수중시계 관측을 위하여 2006년 9월 $19{\sim}22$일, 4일 동안 황해 중부해역에서 현장관측을 실시하였으며, 총 39개 정점에서 해양 광학적 자료와 해양 환경적 자료를 획득하였다. 획득된 자료를 이용하여 경험적 방법으로 $K_d({\lambda})$와 수중시계 알고리즘을 개발하였으며, 개발된 알고리즘들은 각각 기존의 대양의 자료를 이용하여 개발된 SeaWiFS 해색 센서용 $K_d({\lambda})$ 알고리즘과 NRL (Naval Research Laboratory)에서 개발된 SeaWiFS 센서용 수중시계 알고리즘과 비교하여 보았다. $K_d({\lambda})$ 알고리즘의 경우는 탁도가 높은 해역 값에서 약간의 차이를 보였으며, 수중시계 알고리즘의 경우 NRL의 알고리즘에 비해 약간 높은 계수 값을 얻었다.

Validation of the semi-analytical algorithm for estimating vertical underwater visibility using MODIS data in the waters around Korea

  • Kim, Sun-Hwa;Yang, Chan-Su;Ouchi, Kazuo
    • 대한원격탐사학회지
    • /
    • 제29권6호
    • /
    • pp.601-610
    • /
    • 2013
  • As a standard water clarity variable, the vertical underwater visibility, called Secchi depth, is estimated with ocean color satellite data. In the present study, Moderate Resolvtion Imaging Spectradiometer (MODIS) data are used to measure the Secchi depth which is a useful indicator of ocean transparency for estimating the water quality and productivity. To estimate the Secchi depth $Z_v$, the empirical regression model is developed based on the satellite optical data and in-situ data. In the previous study, a semi-analytical algorithm for estimating $Z_v$ was developed and validated for Case 1 and 2 waters in both coastal and oceanic waters using extensive sets of satellite and in-situ data. The algorithm uses the vertical diffuse attenuation coefficient, $K_d$($m^{-1}$) and the beam attenuation coefficient, c($m^{-1}$) obtained from satellite ocean color data to estimate $Z_v$. In this study, the semi-analytical algorithm is validated using temporal MODIS data and in-situ data over the Yellow, Southern and East Seas including Case 1 and 2 waters. Using total 156 matching data, MODIS $Z_v$ data showed about 3.6m RMSE value and 1.7m bias value. The $Z_v$ values of the East Sea and Southern Sea showed higher RMSE than the Yellow Sea. Although the semi-analytical algorithm used the fixed coupling constant (= 6.0) transformed from Inherent Optical Properties (IOP) and Apparent Optical Properties (AOP) to Secchi depth, various coupling constants are needed for different sea types and water depth for the optimum estimation of $Z_v$.

수중영상을 이용한 저서성 해양무척추동물의 실시간 객체 탐지: YOLO 모델과 Transformer 모델의 비교평가 (Realtime Detection of Benthic Marine Invertebrates from Underwater Images: A Comparison betweenYOLO and Transformer Models)

  • 박강현;박수호;장선웅;공신우;곽지우;이양원
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.909-919
    • /
    • 2023
  • Benthic marine invertebrates, the invertebrates living on the bottom of the ocean, are an essential component of the marine ecosystem, but excessive reproduction of invertebrate grazers or pirate creatures can cause damage to the coastal fishery ecosystem. In this study, we compared and evaluated You Only Look Once Version 7 (YOLOv7), the most widely used deep learning model for real-time object detection, and detection tansformer (DETR), a transformer-based model, using underwater images for benthic marine invertebratesin the coasts of South Korea. YOLOv7 showed a mean average precision at 0.5 (mAP@0.5) of 0.899, and DETR showed an mAP@0.5 of 0.862, which implies that YOLOv7 is more appropriate for object detection of various sizes. This is because YOLOv7 generates the bounding boxes at multiple scales that can help detect small objects. Both models had a processing speed of more than 30 frames persecond (FPS),so it is expected that real-time object detection from the images provided by divers and underwater drones will be possible. The proposed method can be used to prevent and restore damage to coastal fisheries ecosystems, such as rescuing invertebrate grazers and creating sea forests to prevent ocean desertification.

GOCI-II 및 극궤도 위성 자료를 병합한 Chlorophyll-a 산출물 생산방법 소개 및 활용 가능성 평가 (Introduction and Evaluation of the Production Method for Chlorophyll-a Using Merging of GOCI-II and Polar Orbit Satellite Data)

  • 신혜경;권재엽;김평중;김태호
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1255-1272
    • /
    • 2023
  • 위성영상 기반 클로로필-a (chlorophyll-a) 농도는 전지구 기후변화 연구를 위해 장기간의 시계열 자료로 생산되고 있으며, 시간합성 또는 다종위성 자료의 병합(merging)을 통해 결측이 없는 자료의 생산이 요구된다. 그러나 한반도 주변 해역에서의 위성영상 기반 클로로필-a 농도와 관련된 연구는 단일 해색센서로 산출하여 계절적 특징을 평가하거나 연구해역에 적합한 알고리즘을 제시하는 연구가 주로 수행되었다. 본 연구에서는 한반도 주변 해역에서의 공간 커버리지가 높은 클로로필-a 농도 산출을 위해 정지궤도 해색센서 GOCI-II와 극궤도 센서(MODIS, VIIRS, OLCI)의 원격반사도(Remote Sensing Reflectance) 병합자료를 이용하였다. 연구결과 산출물의 공간 커버리지는 극궤도 해색센서 자료보다 약 30% 증가하여 구름으로 인한 결측을 보완하였다. 그리고 현장 관측자료와 함께 Ocean Colour Climate Change Initiative (OC-CCI)와 GlobColour에서 제공하는 전지구 클로로필-a 합성장 자료와의 비교를 통해 정확도를 정량적으로 제시하고자 하였다. 그러나 현장관측 자료의 절대적인 수 부족으로 유의미한 통계적 결과는 제시하지 못하였지만, 전지구 자료와의 비교 결과보다 과소 추정 경향을 확인하였다. 또한 적조와 같은 해양재해·재난 대응 목적의 활용성 평가를 위해 2013년 동해에서 발생한 대번성 사례와 정성적으로 비교하여 정지궤도 해색센서 단독 결과보다 OC-CCI와 유사하게 나타나는 것을 확인하였다. 본 연구를 통해 산출한 결과를 사용하여 향후 인공지능모델 기반의 예측 연구와 아노말리(anomaly) 활용 연구를 수행할 예정이며, 이를 통해 우리나라 연안해역에서 발생하는 클로로필-a 이벤트 모니터링에 유용하게 활용이 가능할 것으로 기대된다.

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

GOCI-II 기반 괭생이모자반 모니터링 시스템 성능 평가: 황해 및 동중국해 해역 오탐지 제거 결과를 중심으로 (Performance Evaluation of Monitoring System for Sargassum horneri Using GOCI-II: Focusing on the Results of Removing False Detection in the Yellow Sea and East China Sea)

  • 이한빛;김주은;김문선;김동수;민승환;김태호
    • 대한원격탐사학회지
    • /
    • 제39권6_2호
    • /
    • pp.1615-1633
    • /
    • 2023
  • 괭생이모자반은 황해 및 동중국해에서 대규모 번식하는 부유조류 중 하나로 우리나라 연안에 유입되어 환경 파괴 및 양식업 피해 등 다양한 문제점을 야기한다. 효율적인 피해 예방 및 연안 환경 보존을 위하여 최근 인공위성 기반 원격탐사 기술을 활용한 괭생이모자반 탐지 알고리즘 개발이 활발하게 이루어지고 있다. 하지만, 잘못된 탐지 정보는 해상 수거 선박의 이동 거리 증가, 지자체나 유관기관의 대응 혼선 등을 유발하므로 괭생이모자반 공간정보 생산 시 오탐지 최소화는 매우 중요하다. 본 연구는 국립해양조사원 국가해양위성센터의 GOCI-II 기반 괭생이모자반 탐지 알고리즘을 활용하여 자동으로 오탐지 화소를 제거하는 기술을 적용하였다. 주요 오탐지 발생 원인 분석 결과를 바탕으로 선형·산발적 오탐지 및 봄, 여름철에 중국 연안에서 대량으로 발생하는 녹조류를 오탐지로 간주하여 제거하는 과정을 포함하였다. 2022년 2월 24일부터 6월 25일까지 괭생이모자반 발생일을 대상으로 오탐지 자동 제거 기법을 적용하고, 중해상도 위성 영상을 이용하여 육안 판독 결과를 생성하고 정성적, 정량적 평가를 수행하였다. 선형 오탐지는 완전히 제거하였으며, 산발적 및 녹조 오탐지는 분포 파악에 영향을 주는 대부분의 오탐지 결과를 제거하였다. 자동 오탐지 제거 과정 이후에도 육안 판독 결과 대비 괭생이모자반의 분포 면적 확인이 가능하였으며, 이진분류모델을 이용하여 정확도와 정밀도는 각각 평균 97.73%, 95.4%로 산출하였다. 재현율은 매우 낮은 29.03%였는데, 이는 GOCI-II와 중해상도 위성영상의 관측 시간 불일치에 의한 괭생이모자반 이동 영향, 공간해상도 차이, 정사보정에 따른 위치 편차, 그리고 구름 마스킹 영향에 의한 것으로 추정하였다. 본 연구의 괭생이모자반 오탐지 제거 결과는 공간적인 분포 현황을 준실시간으로 파악할 수 있으나 생체량을 정확하게 추정하는 것은 한계가 존재하였다. 따라서, 지속적인 괭생이모자반 모니터링 시스템 고도화 연구를 통해 향후 괭생이모자반 대응계획수립을 위한 자료로 활용하고자 한다.

Seasonal Variation of Attenuation Coefficient Spectra Extracted from Yamato Bank Optical Moored Buoy Data

  • Senga, Yasuhiro;Horiuchi, Tomohiro
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.89-94
    • /
    • 1998
  • Seasonal variation of attenuation coefficient spectra in Japan sea was extracted from underwater radiance/irradiance spectra observed by a moored buoy system developed by National Space Development Agency of Japan (NASDA). The buoy was deployed 9 months from August 31, 1996 to June 1, 1997. Throughout this period, it was collecting downward irradiance and upward radiance spectra under water at the depth of 1.5m and 6.5m everyday. The dairy averaged diffused attenuation coefficient spectra and underwater reflectance spectra were calculated. The results were compared with the absorption spectra of filtered samples obtained by validation cruises, which carried out 5 times during the moored period. Also, the natural fluorescence of chlorophyll a were extracted from the upward radiance spectra observed at 1.5m depth. The seasonal variation of the calculated attenuation coefficient spectra and the natural fluorescence were examined. The result shows a weak blooming of phytoplankton on November and a large blooming on April.

  • PDF

YOLO 알고리즘 기반 국토위성영상의 선박 모니터링 가능성 평가 연구: 부산 신항과 캘리포니아 오클랜드항을 대상으로 (A Study on Evaluating the Possibility of Monitoring Ships of CAS500-1 Images Based on YOLO Algorithm: A Case Study of a Busan New Port and an Oakland Port in California)

  • 박상철;박영빈;장소영;김태호
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1463-1478
    • /
    • 2022
  • 한국 수출입의 99.7%는 해상운송이 차지하고 있으며, 항만의 효율적 운영을 위해 해운 물류 모니터링 시스템 개발 필요성이 대두되고 있다. 현재 automatic identification system (AIS)를 기반으로 선박의 정보를 조회하여 해상 물동량 추정 연구가 진행되고 있지만, AIS를 운영하지 않는 선박들에 대한 모니터링은 불가능하다는 한계가 있다. 고해상도 광학 위성 영상은 광역의 범위에서 AIS 미운영 선박 및 소형 선박을 식별할 수 있기 때문에 AIS 기반 물동량 모니터링의 공백을 보완할 수 있다. 그러므로 선박 및 물동량 모니터링에 활용하기 위해, 고해상도 광학 위성영상에서 선박을 탐지하고 화물선 및 소형 선박을 분류하는 연구가 필요하다. 본 연구는 초기 국토위성영상을 이용하여 생산된 학습 자료 기반으로 인공지능 모델을 훈련시키고 다른 영상에서 탐지를 수행함으로써, 국토위성영상의 딥러닝 학습 자료 생산 및 선박 모니터링 활용 가능성을 알아보고자 하였다. 학습 자료는 황해 및 황해 주요 항만 구역 내 선박들을 추출하여 제작했으며, You Only Look Once (YOLO) 알고리즘을 사용하여 탐지 모델은 구축하고 국내외 주요 항만 각 1개소를 대상으로 선박 탐지 성능을 평가하였다. 항만 접안 및 해상 정박중인 선박을 대상으로 탐지 모델에 적용한 결과를 AIS의 선종 정보와 비교하였고, 국내 항만에서 85.5%와 89%, 국외 항만에서 70%의 선종 분류 정확도를 확인하였다. 본 연구 결과는 정박중인 선박을 중심으로 고해상도 국토위성영상을 활용하여 모니터링이 가능함을 확인하였다. 향후 지속적인 학습 자료 구축을 통해 탐지 모델의 정확도를 향상시킨다면 전세계 주요 항만에서 선박 및 물동량 모니터링 분야에 활용할 수 있을 것으로 기대된다.

고해상도 광학 위성영상의 항만선박관리 활용 가능성 평가: 부산 신항의 선석 활용을 대상으로 (Evaluation of the Utilization Potential of High-Resolution Optical Satellite Images in Port Ship Management: A Case Study on Berth Utilization in Busan New Port)

  • 김현수 ;장소영 ;김태호
    • 대한원격탐사학회지
    • /
    • 제39권5_4호
    • /
    • pp.1173-1183
    • /
    • 2023
  • 한국의 전체 수출입 물동량은 지난 20여년 동안 연평균 약 5.3%씩 증가하였고, 약 99%가량의 화물이 여전히 해상을 통해 운송되고 있는 것으로 나타났다. 최근 해상 물동량 증가, 코로나 및 전쟁 등의 이유로 해상 물류가 혼잡해지고 예측이 어려워지고 있어 지속적인 항만의 모니터링이 중요하다. 다양한 지상 관측 시스템과 automatic identification system (AIS) 정보를 이용하여 항만을 모니터링하고 항만 내 컨테이너 터미널의 효율적 운영과 물동량 예측을 위한 많은 선행 연구가 진행되었다. 하지만, 소형 무역항이나 개발도상국의 무역항의 경우 대형 항만에 비해 환경 문제와 노후화된 인프라 등의 이유로 항만을 모니터링하기에 어려움이 있다. 최근 인공위성의 활용성이 높아짐에 따라 광범위하고 접근하기 어려운 지역에 대해 위성 영상을 이용하여 지속적인 해상 물동량 데이터 수집 및 해양 감시체계 구축을 위한 선행 연구가 진행되고 있다. 본 연구는 고해상도 위성영상을 이용하여 부산 신항을 대상으로 항만 내 컨테이너 터미널에 존재하는 선석에 정박한 선박을 육안으로 탐지하고 선석 활용률을 정량적으로 평가하고자 한다. 국토위성, 아리랑위성 3호, PlanetScope, Sentinel-2A를 이용해 항만 내 선석에 정박하고 있는 선박을 육안으로 탐지하였고 선석에 정박 가능한 전체 선박의 수를 이용하여 선석 활용률을 산출하였다. 산출 결과 2022년 6월 2일의 경우 0.67, 0.7, 0.59로 변화하는 것을 보였으며, 영상 촬영 시각에 따라 선박의 수가 변화한 것으로 확인되었다. 2022년 6월 3일의 경우 0.7로 동일한 것으로 나타났고 이는 선박의 종류는 변화하였으나 촬영 시각에 선박의 수는 동일한 것으로 확인이 되었다. 선석 활용률은 값이 클수록 해당 선석에서의 작업이 활발하게 이루어지고 있는 것을 의미하고 있으며, 이는 선석이 혼잡하여 정박지에서 대기하고 있는 다른 선박의 대기시간이 길어지고 운임료가 증가할 수 있기 때문에 선석 활용률을 이용하여 기초적인 새로운 선박 운항 계획 수립에 도움이 될 것으로 판단된다. 선석에서의 작업시간은 수시간에서 수일이 소요되는데 영상의 촬영 시간 차이에 따른 선석에서의 선박의 변화율을 산출한 결과 4분 49초의 시간차이에도 선박의 변화가 있는 것을 확인할 수 있었다. 이는 관측 주기가 짧고 고해상도 위성영상을 모두 이용한다면 항만내 지속적인 모니터링이 가능할 것으로 사료된다. 그리고 항만 내 선박의 변화를 최소 시간 단위로 확인할 수 있는 위성 영상을 활용하면 항만 관리가 이루어지지 않는 소형 무역항이나 개발도상국의 무역항 등에서도 유용하게 사용할 수 있을 것으로 기대된다.