The Ieodo Ocean Research Station (IORS) lies between the exclusive economic zone (EEZ) boundaries of Korea, Japan, and China. The geographical positioning of the IORS makes it ideal for monitoring ships in the area. In this study, we introduce ship monitoring results by Automatic Identification System (AIS) and the Broadband 3GTM radar, which has been developed for use in small ships using the Frequency Modulated Continuous Wave (FMCW) technique. AIS and FMCW radar data were collected at IORS from November 23th to 30th, 2013. The acquired FMCW radar data was converted to 2-D binary image format over pre-processing, including the internal and external noise filtering. The ship positions detected by FMCW radar images were passed into a tracking algorithm. We then compared the detection and tracking results from FMCW radar with AIS information and found that they were relatively well matched. Tracking performance is especially good when ships are across from each other. The results also show good monitoring capability for small fishing ships, even those not equipped with AIS or with a dysfunctional AIS.
해수 속으로 입수된 하향 태양에너지 (down-welling irradiance)가 수심이 깊어짐에 따라 확산 소산되는 정도를 나타내는 하향 확산 감쇠계수 (Diffuse attenuation coefficient of down-welling irradiance, $K_d({\lambda})$)와 해수 속에서의 가시거리를 나타내는 수중시계는 수중에서의 광학적 성격을 나타내는 중요한 지수이다. 이러한 $K_d({\lambda})$ 및 수중시계에 대한 많은 연구가 세계적으로 여러 해역에 대해 수행되어 왔지만 우리나라 연안 해역을 대상으로 하는 연구는 매우 적은 실정이다. 따라서 본 연구에서는 우리나라의 황해 중부해역을 대상으로 $K_d({\lambda})$ 및 수중시계를 관측하였고, 해색위성용 $K_d({\lambda})$ 및 수중시계 알고리즘을 개발하였다. $K_d({\lambda})$ 및 수중시계 관측을 위하여 2006년 9월 $19{\sim}22$일, 4일 동안 황해 중부해역에서 현장관측을 실시하였으며, 총 39개 정점에서 해양 광학적 자료와 해양 환경적 자료를 획득하였다. 획득된 자료를 이용하여 경험적 방법으로 $K_d({\lambda})$와 수중시계 알고리즘을 개발하였으며, 개발된 알고리즘들은 각각 기존의 대양의 자료를 이용하여 개발된 SeaWiFS 해색 센서용 $K_d({\lambda})$ 알고리즘과 NRL (Naval Research Laboratory)에서 개발된 SeaWiFS 센서용 수중시계 알고리즘과 비교하여 보았다. $K_d({\lambda})$ 알고리즘의 경우는 탁도가 높은 해역 값에서 약간의 차이를 보였으며, 수중시계 알고리즘의 경우 NRL의 알고리즘에 비해 약간 높은 계수 값을 얻었다.
As a standard water clarity variable, the vertical underwater visibility, called Secchi depth, is estimated with ocean color satellite data. In the present study, Moderate Resolvtion Imaging Spectradiometer (MODIS) data are used to measure the Secchi depth which is a useful indicator of ocean transparency for estimating the water quality and productivity. To estimate the Secchi depth $Z_v$, the empirical regression model is developed based on the satellite optical data and in-situ data. In the previous study, a semi-analytical algorithm for estimating $Z_v$ was developed and validated for Case 1 and 2 waters in both coastal and oceanic waters using extensive sets of satellite and in-situ data. The algorithm uses the vertical diffuse attenuation coefficient, $K_d$($m^{-1}$) and the beam attenuation coefficient, c($m^{-1}$) obtained from satellite ocean color data to estimate $Z_v$. In this study, the semi-analytical algorithm is validated using temporal MODIS data and in-situ data over the Yellow, Southern and East Seas including Case 1 and 2 waters. Using total 156 matching data, MODIS $Z_v$ data showed about 3.6m RMSE value and 1.7m bias value. The $Z_v$ values of the East Sea and Southern Sea showed higher RMSE than the Yellow Sea. Although the semi-analytical algorithm used the fixed coupling constant (= 6.0) transformed from Inherent Optical Properties (IOP) and Apparent Optical Properties (AOP) to Secchi depth, various coupling constants are needed for different sea types and water depth for the optimum estimation of $Z_v$.
Benthic marine invertebrates, the invertebrates living on the bottom of the ocean, are an essential component of the marine ecosystem, but excessive reproduction of invertebrate grazers or pirate creatures can cause damage to the coastal fishery ecosystem. In this study, we compared and evaluated You Only Look Once Version 7 (YOLOv7), the most widely used deep learning model for real-time object detection, and detection tansformer (DETR), a transformer-based model, using underwater images for benthic marine invertebratesin the coasts of South Korea. YOLOv7 showed a mean average precision at 0.5 (mAP@0.5) of 0.899, and DETR showed an mAP@0.5 of 0.862, which implies that YOLOv7 is more appropriate for object detection of various sizes. This is because YOLOv7 generates the bounding boxes at multiple scales that can help detect small objects. Both models had a processing speed of more than 30 frames persecond (FPS),so it is expected that real-time object detection from the images provided by divers and underwater drones will be possible. The proposed method can be used to prevent and restore damage to coastal fisheries ecosystems, such as rescuing invertebrate grazers and creating sea forests to prevent ocean desertification.
위성영상 기반 클로로필-a (chlorophyll-a) 농도는 전지구 기후변화 연구를 위해 장기간의 시계열 자료로 생산되고 있으며, 시간합성 또는 다종위성 자료의 병합(merging)을 통해 결측이 없는 자료의 생산이 요구된다. 그러나 한반도 주변 해역에서의 위성영상 기반 클로로필-a 농도와 관련된 연구는 단일 해색센서로 산출하여 계절적 특징을 평가하거나 연구해역에 적합한 알고리즘을 제시하는 연구가 주로 수행되었다. 본 연구에서는 한반도 주변 해역에서의 공간 커버리지가 높은 클로로필-a 농도 산출을 위해 정지궤도 해색센서 GOCI-II와 극궤도 센서(MODIS, VIIRS, OLCI)의 원격반사도(Remote Sensing Reflectance) 병합자료를 이용하였다. 연구결과 산출물의 공간 커버리지는 극궤도 해색센서 자료보다 약 30% 증가하여 구름으로 인한 결측을 보완하였다. 그리고 현장 관측자료와 함께 Ocean Colour Climate Change Initiative (OC-CCI)와 GlobColour에서 제공하는 전지구 클로로필-a 합성장 자료와의 비교를 통해 정확도를 정량적으로 제시하고자 하였다. 그러나 현장관측 자료의 절대적인 수 부족으로 유의미한 통계적 결과는 제시하지 못하였지만, 전지구 자료와의 비교 결과보다 과소 추정 경향을 확인하였다. 또한 적조와 같은 해양재해·재난 대응 목적의 활용성 평가를 위해 2013년 동해에서 발생한 대번성 사례와 정성적으로 비교하여 정지궤도 해색센서 단독 결과보다 OC-CCI와 유사하게 나타나는 것을 확인하였다. 본 연구를 통해 산출한 결과를 사용하여 향후 인공지능모델 기반의 예측 연구와 아노말리(anomaly) 활용 연구를 수행할 예정이며, 이를 통해 우리나라 연안해역에서 발생하는 클로로필-a 이벤트 모니터링에 유용하게 활용이 가능할 것으로 기대된다.
Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.
괭생이모자반은 황해 및 동중국해에서 대규모 번식하는 부유조류 중 하나로 우리나라 연안에 유입되어 환경 파괴 및 양식업 피해 등 다양한 문제점을 야기한다. 효율적인 피해 예방 및 연안 환경 보존을 위하여 최근 인공위성 기반 원격탐사 기술을 활용한 괭생이모자반 탐지 알고리즘 개발이 활발하게 이루어지고 있다. 하지만, 잘못된 탐지 정보는 해상 수거 선박의 이동 거리 증가, 지자체나 유관기관의 대응 혼선 등을 유발하므로 괭생이모자반 공간정보 생산 시 오탐지 최소화는 매우 중요하다. 본 연구는 국립해양조사원 국가해양위성센터의 GOCI-II 기반 괭생이모자반 탐지 알고리즘을 활용하여 자동으로 오탐지 화소를 제거하는 기술을 적용하였다. 주요 오탐지 발생 원인 분석 결과를 바탕으로 선형·산발적 오탐지 및 봄, 여름철에 중국 연안에서 대량으로 발생하는 녹조류를 오탐지로 간주하여 제거하는 과정을 포함하였다. 2022년 2월 24일부터 6월 25일까지 괭생이모자반 발생일을 대상으로 오탐지 자동 제거 기법을 적용하고, 중해상도 위성 영상을 이용하여 육안 판독 결과를 생성하고 정성적, 정량적 평가를 수행하였다. 선형 오탐지는 완전히 제거하였으며, 산발적 및 녹조 오탐지는 분포 파악에 영향을 주는 대부분의 오탐지 결과를 제거하였다. 자동 오탐지 제거 과정 이후에도 육안 판독 결과 대비 괭생이모자반의 분포 면적 확인이 가능하였으며, 이진분류모델을 이용하여 정확도와 정밀도는 각각 평균 97.73%, 95.4%로 산출하였다. 재현율은 매우 낮은 29.03%였는데, 이는 GOCI-II와 중해상도 위성영상의 관측 시간 불일치에 의한 괭생이모자반 이동 영향, 공간해상도 차이, 정사보정에 따른 위치 편차, 그리고 구름 마스킹 영향에 의한 것으로 추정하였다. 본 연구의 괭생이모자반 오탐지 제거 결과는 공간적인 분포 현황을 준실시간으로 파악할 수 있으나 생체량을 정확하게 추정하는 것은 한계가 존재하였다. 따라서, 지속적인 괭생이모자반 모니터링 시스템 고도화 연구를 통해 향후 괭생이모자반 대응계획수립을 위한 자료로 활용하고자 한다.
대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
/
pp.89-94
/
1998
Seasonal variation of attenuation coefficient spectra in Japan sea was extracted from underwater radiance/irradiance spectra observed by a moored buoy system developed by National Space Development Agency of Japan (NASDA). The buoy was deployed 9 months from August 31, 1996 to June 1, 1997. Throughout this period, it was collecting downward irradiance and upward radiance spectra under water at the depth of 1.5m and 6.5m everyday. The dairy averaged diffused attenuation coefficient spectra and underwater reflectance spectra were calculated. The results were compared with the absorption spectra of filtered samples obtained by validation cruises, which carried out 5 times during the moored period. Also, the natural fluorescence of chlorophyll a were extracted from the upward radiance spectra observed at 1.5m depth. The seasonal variation of the calculated attenuation coefficient spectra and the natural fluorescence were examined. The result shows a weak blooming of phytoplankton on November and a large blooming on April.
한국 수출입의 99.7%는 해상운송이 차지하고 있으며, 항만의 효율적 운영을 위해 해운 물류 모니터링 시스템 개발 필요성이 대두되고 있다. 현재 automatic identification system (AIS)를 기반으로 선박의 정보를 조회하여 해상 물동량 추정 연구가 진행되고 있지만, AIS를 운영하지 않는 선박들에 대한 모니터링은 불가능하다는 한계가 있다. 고해상도 광학 위성 영상은 광역의 범위에서 AIS 미운영 선박 및 소형 선박을 식별할 수 있기 때문에 AIS 기반 물동량 모니터링의 공백을 보완할 수 있다. 그러므로 선박 및 물동량 모니터링에 활용하기 위해, 고해상도 광학 위성영상에서 선박을 탐지하고 화물선 및 소형 선박을 분류하는 연구가 필요하다. 본 연구는 초기 국토위성영상을 이용하여 생산된 학습 자료 기반으로 인공지능 모델을 훈련시키고 다른 영상에서 탐지를 수행함으로써, 국토위성영상의 딥러닝 학습 자료 생산 및 선박 모니터링 활용 가능성을 알아보고자 하였다. 학습 자료는 황해 및 황해 주요 항만 구역 내 선박들을 추출하여 제작했으며, You Only Look Once (YOLO) 알고리즘을 사용하여 탐지 모델은 구축하고 국내외 주요 항만 각 1개소를 대상으로 선박 탐지 성능을 평가하였다. 항만 접안 및 해상 정박중인 선박을 대상으로 탐지 모델에 적용한 결과를 AIS의 선종 정보와 비교하였고, 국내 항만에서 85.5%와 89%, 국외 항만에서 70%의 선종 분류 정확도를 확인하였다. 본 연구 결과는 정박중인 선박을 중심으로 고해상도 국토위성영상을 활용하여 모니터링이 가능함을 확인하였다. 향후 지속적인 학습 자료 구축을 통해 탐지 모델의 정확도를 향상시킨다면 전세계 주요 항만에서 선박 및 물동량 모니터링 분야에 활용할 수 있을 것으로 기대된다.
한국의 전체 수출입 물동량은 지난 20여년 동안 연평균 약 5.3%씩 증가하였고, 약 99%가량의 화물이 여전히 해상을 통해 운송되고 있는 것으로 나타났다. 최근 해상 물동량 증가, 코로나 및 전쟁 등의 이유로 해상 물류가 혼잡해지고 예측이 어려워지고 있어 지속적인 항만의 모니터링이 중요하다. 다양한 지상 관측 시스템과 automatic identification system (AIS) 정보를 이용하여 항만을 모니터링하고 항만 내 컨테이너 터미널의 효율적 운영과 물동량 예측을 위한 많은 선행 연구가 진행되었다. 하지만, 소형 무역항이나 개발도상국의 무역항의 경우 대형 항만에 비해 환경 문제와 노후화된 인프라 등의 이유로 항만을 모니터링하기에 어려움이 있다. 최근 인공위성의 활용성이 높아짐에 따라 광범위하고 접근하기 어려운 지역에 대해 위성 영상을 이용하여 지속적인 해상 물동량 데이터 수집 및 해양 감시체계 구축을 위한 선행 연구가 진행되고 있다. 본 연구는 고해상도 위성영상을 이용하여 부산 신항을 대상으로 항만 내 컨테이너 터미널에 존재하는 선석에 정박한 선박을 육안으로 탐지하고 선석 활용률을 정량적으로 평가하고자 한다. 국토위성, 아리랑위성 3호, PlanetScope, Sentinel-2A를 이용해 항만 내 선석에 정박하고 있는 선박을 육안으로 탐지하였고 선석에 정박 가능한 전체 선박의 수를 이용하여 선석 활용률을 산출하였다. 산출 결과 2022년 6월 2일의 경우 0.67, 0.7, 0.59로 변화하는 것을 보였으며, 영상 촬영 시각에 따라 선박의 수가 변화한 것으로 확인되었다. 2022년 6월 3일의 경우 0.7로 동일한 것으로 나타났고 이는 선박의 종류는 변화하였으나 촬영 시각에 선박의 수는 동일한 것으로 확인이 되었다. 선석 활용률은 값이 클수록 해당 선석에서의 작업이 활발하게 이루어지고 있는 것을 의미하고 있으며, 이는 선석이 혼잡하여 정박지에서 대기하고 있는 다른 선박의 대기시간이 길어지고 운임료가 증가할 수 있기 때문에 선석 활용률을 이용하여 기초적인 새로운 선박 운항 계획 수립에 도움이 될 것으로 판단된다. 선석에서의 작업시간은 수시간에서 수일이 소요되는데 영상의 촬영 시간 차이에 따른 선석에서의 선박의 변화율을 산출한 결과 4분 49초의 시간차이에도 선박의 변화가 있는 것을 확인할 수 있었다. 이는 관측 주기가 짧고 고해상도 위성영상을 모두 이용한다면 항만내 지속적인 모니터링이 가능할 것으로 사료된다. 그리고 항만 내 선박의 변화를 최소 시간 단위로 확인할 수 있는 위성 영상을 활용하면 항만 관리가 이루어지지 않는 소형 무역항이나 개발도상국의 무역항 등에서도 유용하게 사용할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.