• 제목/요약/키워드: Underwater mooring platform

검색결과 4건 처리시간 0.02초

Conceptual design and numerical simulations of a vertical axis water turbine used for underwater mooring platforms

  • Wenlong, Tian;Baowei, Song;Zhaoyong, Mao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.625-634
    • /
    • 2013
  • Energy is a direct restriction to the working life of an underwater mooring platform (UMP). In this paper, a vertical axis water turbine (VAWT) is designed to supply energy for UMPs. The VAWT has several controlled blades, which can be opened or closed by inside plunger pumps. Two-dimensional transient numerical studies are presented to determine the operating performance and power output of the turbine under low ocean current velocity. A standard k-${\varepsilon}$ turbulence model is used to perform the transient simulations. The influence of structural parameters, including foil section profile, foil chord length and rotor diameter, on the turbine performance are investigated over a range of tip-speed-ratios (TSRs). It was found that turbine with three unit length NACA0015 foils generated a maximum averaged coefficient of power, 0.1, at TSR = 2.

수중음향 수평 배열 플랫폼의 거동 해석과 시험 (Analysis and Tests of the Behavior of an Underwater Acoustic Horizontal Array Platform)

  • 이종무;김기훈;변성훈
    • 한국해양공학회지
    • /
    • 제32권4호
    • /
    • pp.222-227
    • /
    • 2018
  • Most underwater acoustic arrays for low frequency operation are deployed vertically, but a mid-range frequency horizontal array system is being developed by the Korea Research Institute of Ships and Ocean Engineering (KRISO). The horizontal array platform is deployed underwater and kept in place by weather vaning mooring. This is essential because it is nearly impossible to keep a submerged body at a given position in the water without any external force. Hence, the horizontal array platform can maintain the desired position in the presence of a weak tidal current. The objective of this study is to design an underwater platform that can maintain its horizontal position in a weak current. First, the authors investigated various virtual models, selected one of the models, and performed a small model test of the selected model at a basin. We calculated the external forces associated with the 2D motion, and then we conducted a large basin test followed by a circulation water channel test for the manufactured array platform. The results of the simplified 2D motion calculation essentially matched the results of the underwater test.

Experimental study on the vibration mitigation of offshore tension leg platform system with UWTLCD

  • Lee, Hsien Hua;Juang, H.H.
    • Smart Structures and Systems
    • /
    • 제9권1호
    • /
    • pp.71-104
    • /
    • 2012
  • In this research, a typical tension-leg type of floating platform incorporated with an innovative concept of underwater tuned liquid column damper system (UWTLCD) is studied. The purpose of this study is to improve the structural safety by means of mitigating the wave induced vibrations and stresses on the offshore floating Tension Leg Platform (TLP) system. Based on some encouraging results from a previous study, where a Tuned Liquid Column Damper (TLCD) system was employed in a floating platform system to reduce the vibration of the main structure, in this study, the traditional TLCD system was modified and tested. Firstly, the orifice-tube was replaced with a smaller horizontal tube and secondly, the TLCD system was combined into the pontoon system under the platform. The modification creates a multipurpose pontoon system associated with vibration mitigation function. On the other hand, the UWTLCD that is installed underwater instead would not occupy any additional space on the platform and yet provide buoyancy to the system. Experimental tests were performed for the mitigation effect and parameters besides the wave conditions, such as pontoon draught and liquid-length in the TLCD were taken into account in the test. It is found that the accurately tuned UWTLCD system could effectively reduce the dynamic response of the offshore platform system in terms of both the vibration amplitude and tensile forces measured in the mooring tethers.

탈착계류시스템 반잠수식 무어링 풀리의 구조강도평가법에 관한 연구 (A Study on the Strength Evaluation Method of Submersible Mooring Pulleys for Detachable Mooring Systems)

  • 이강수;박병재
    • 풍력에너지저널
    • /
    • 제15권1호
    • /
    • pp.91-102
    • /
    • 2024
  • Rapid progress is being made in foundational technology research and engineering for the construction of floating offshore wind farms. There is active development of technology for detachable mooring systems, which have strengths in addressing maintenance issues that arise in floating offshore wind farms and enhance their economic viability. Conventional detachable mooring systems use Kenter links inserted into the middle of mooring chains, which require excessive time for retrieval by Anchor Handling Tug Supply (AHTS) vessels during detachment operations. Moreover, these operations pose risks of link damage and accidents. Therefore, there is a demand for the development of a new concept of detachable mooring systems. The proposed detachable mooring system in this study simultaneously integrates a fairlead chain stoppers (FCS) and submersible mooring pulleys (SMP), which enables all operations to be conducted on the AHTS vessel without underwater tasks. This study detailed the design and safety evaluation of the SMP, a core component of the detachable mooring system, based on the minimum breaking load (MBL) of selected mooring lines according to the capacity of the floating platform. It referenced international codes (AISC Specification for Structural Steel Buildings D5, Pin-Connected Members) for design verification and performed finite element analysis to evaluate the strength of major components in installation and operation scenarios. Additionally, procedures and techniques for evaluating the structural strength of components under uncertain boundary conditions were proposed.