• Title/Summary/Keyword: Underwater information

Search Result 678, Processing Time 0.023 seconds

Study on Cooperative Communication for Underwater Acoustic Channels (수중음향 채널에서의 협력통신에 대한 연구)

  • Kang, Heehoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.168-174
    • /
    • 2015
  • In this paper, we analyze the performance of cooperative communication techniques on an underwater channel. By analyzing the BER performance of cooperative transmission protocol and combining types ERC, FRC, SNRC and ESNRC on underwater channel, through the result, we can choose an a proper cooperative technique for an underwater channel. The analysis of BER performance is achieved by a computer simulation.

A Research on the Design Techniques for Underwater Acoustic Basin (무향 수조 설계기법 연구)

  • 임용곤;이종무;박종원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.371-377
    • /
    • 2000
  • This paper deals with the design techniques for underwater acoustic basin. An underwater acoustic basin is needed for test and calibration of acoustic sensors, acoustic digital communication system, acoustic measurement system, and underwater image data telemetry system. KRISO(Korea Research Institute of Ships and Ocean Engineering) have planned the construction of an underwater acoustic tank from 1999 to 2001 through internal project. We studied about absorbtion characteristics of a porous re-cycled rubber which is selected as a absorption materials and designed absorption plate with wedge shape. The simulation of reflection analysis along the wedge angle for wedged type plate was presented.

  • PDF

Simulator for Active Sonar Target Recognition (능동소나 표적인식을 위한 시뮬레이터)

  • Seok, Jongwon;Kim, Taehwan;Bae, Keunsung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2137-2142
    • /
    • 2012
  • Many studies in detection and classification of the targets in the underwater environments have been conducted for military purposes, as well as for non-military purpose. Due to the complicated characteristics of underwater acoustic signal reflecting multipath environments and spatio-temporal varying characteristics, active sonar target classification technique has been considered as a difficult technique. And it has a difficult in collecting actual underwater data. In this paper, we implemented the simulator to synthesize the active target signal, to extract feature and to classify the target in the underwater environment. In target signal synthesis, highlight and three-dimensional model are used and multi-aspect based hidden markov model is used for target classification.

Design and Implementation of an Ultrasonic Communication Modem for Underwater Sensor Networks (수중 센서네트워크를 위한 초음파 통신 모뎀 설계 및 구현)

  • Byeon, Moo-Kwang;Park, Sung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.437-444
    • /
    • 2009
  • Underwater sensor networks (USN) for ocean development and disaster prevention have been emerged as one of interesting research topics recently. Since a high-speed and inexpensive communication modem is a prerequisite for deployment of USN, we design and implement an underwater modem by utilizing general-purpose waterproof ultrasonic sensors in this paper. We also make experiments in indoor and outdoor environment with two modems facing each other to conduct a point-to-point communication. According to the experiments, we can achieve the data rates of 1.5 kbps in a water tank and 2 kbps in a pond. Also, the maximum communication distance between two modems is about 30 meters. Besides, we conduct a point-to-multipoint experiment imitating USN by deploying a gateway, a sink node and three sensor nodes in a water tank.

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

Performance Experimentation and an Optimal Iterative Coding Algorithm for Underwater Acoustic Communication (수중음향통신에서 최적의 반복부호 알고리즘 및 성능 실험)

  • Park, Gun-Yeol;Lim, Byeong-Su;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2397-2404
    • /
    • 2012
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes signal distortion and error floor. In order to improve the performance, it is necessary to employ an iterative coding scheme. Among the iterative coding scheme, turbo codes and LDPC codes are dominant channel coding schemes in recent. This paper concluded that turbo coding scheme is optimal for underwater communications system in aspect to performance, coded word length, and equalizer combining. Also, decision directed phase recovery was used for correcting phase offset induced by multipath. Based on these algorithms, we confirmed the performance in the environment of oceanic experimentation.

Influence of Underwater Channel Time-Variability on Communication Throughput Efficiency (수중 채널의 시변동성이 통신 스루풋 효율에 미치는 영향)

  • Hwang, Chan-Ho;Kim, Ki-Man;Lee, Dong-Won;Park, Tae-Doo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.413-419
    • /
    • 2014
  • Underwater acoustic channel has time-variability. Time varying channel which disturbs the continuous transmission of information data reduces the underwater acoustic communication performance. In this paper, we show the temporal coherence as time-variability of channel and indicate throughput efficiency in accordance with transmission time of information data. Then we analyzed influence of underwater channel time-variability on communication throughput efficiency. We confirmed that the throughput efficiency reduced when the time-variability of the channel increased via lake trial.

Adaptive Equalization using PDP Matching Algorithms for Underwater Communication Channels with Impulsive Noise (충격성 잡음이 있는 수중 통신 채널의 적응 등화를 위한 확률밀도함수 정합 알고리듬)

  • Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1210-1215
    • /
    • 2011
  • In this paper, a supervised adaptive equalization algorithm based on probability density function (PDF) matching method is introduced and its decision-feedback version is proposed for underwater communication channels with strong impulsive noise and severe multipath characteristics. The conventional least mean square (LMS) algorithm based on mean squared error (MSE) criterion has shown to be incapable of coping with impulsive noise and multipath effects commonly shown in underwater communications. The linear PDF matching algorithm, which shows immunity to impulsive noise, however, has revealed to yield unsatisfying performance under severe multipath environments with impulsive noise. On the other hand, the proposed nonlinear PDF matching algorithm with decision feedback proves in the simulation to possess superior robustness against impulsive noise and multipath characteristics of underwater communication channels.

Differentiated Packet Transmission Methods for Underwater Sensor Communication Using SON Technique (SON (Self Organizing Network) 기술을 이용한 해양 수중 센서 간 통신에 있어서 데이터 중요도에 따른 패킷 차별화 전송 기법)

  • Park, Kyung-Min;Kim, Young-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.399-404
    • /
    • 2011
  • For the underwater wireless sensor networks, we propose the packet transmission method which distinguishes more important packet than others. Because the ocean underwater transmission environments are extremely unstable, we use SON(Self Organizing Network) techniques to adapt to the constantly varying underwater acoustic communication channels and randomly deployed sensor nodes. Especially we suppose two kinds of packets which have different priorities, and through the simulations we show that high priority packets arrive at the source node faster than lower priority packets with a proposed scheme.

Performance Analysis of Contention-based Medium Access Control Protocols for Underwater Sensor Networks (수중 센서 네트워크를 위한 경쟁 기반 매체 접근 제어 프로토콜 성능 분석 연구)

  • Chung, Han-Na;Yun, Chang-Ho;Cho, A-Ra;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.633-636
    • /
    • 2011
  • The paper deals with the performance of contention-based medium access control (MAC) protocols for underwater sensor networks. We extensively analyze the number of received-packets and the end-to-end delay of ALOHA, CSMA, CSMA-RTS-CTS and CSMA-RTS-CTS-ACK protocols using a Qualnet underwater network simulator which accommodates diverse underwater acoustic channel environments. Using simulation results, we support an engineering table to determine an adequate contention-based MAC protocol for underwater sensor networks.

  • PDF